Articles

An Innovative Approach to Shaker Testing

By Marc Marroquin Director of Marketing LMS North America Troy, MI When it comes to testing products for long-term durability, shock exposure survival, or accelerated life testing, the classic technique most engineers turn to is vibration testing with a shaker table. These controlled experimental tests have been successfully employed in the worlds of automotive, aerospace, consumer products, and military testing for more than 50 years. This classic test technique is accepted by all industries when durability, survivability, and life-testing data are required. Despite a long and proven track record, vibration shaker testing has its drawbacks. Shaker tests can be expensive, require dedicated test facility/ equipment and trained personnel, and can take days (sometimes weeks) to complete. On top of that, it is not possible to test an object until either a physical prototype or early production unit becomes available. By that time, most design decisions have been made and it is difficult to redesign the product to resolve problems identified during shaker testing. These facts have been accepted as “the way shaker testing is done,” since there was no better way to perform these types of tests. In recent years, engineers have been turning to new technologies like CAE (Computer Assisted Engineering) to help develop products faster and more intelligently. The benefits of integrating CAE into an engineering program are well documented and provide time, cost, and development advantages that enable companies to get better products on the market faster. By applying CAE technology to shaker testing, a new technology is born: Virtual Shaker. The Virtual Shaker technology is quite simple: simulating a vibration shaker test in the digital domain. By using simulation to “virtually shake-test” a device, many of the inherent disadvantages of physical shaker testing are minimized or eliminated. There is no need to wait until a physical device is available, the time and expense associated with shaker testing is dramatically reduced, the “virtual” testing is completely nondestructive, and Virtual Shaker simulations can point out problems well before hard design decisions are made. Along with the obvious benefits pointed out above, Virtual Shaker testing also introduces the ability to play “what if” scenarios with products. Since the actual product to be tested is purely digital, engineers can quickly and easily make changes to the product and see what happens after the change has been made. By combining Virtual Shaker with optimization tools, it is possible to run hundreds of design iterations (changing mass, shapes, materials, boundary conditions, etc.) in automatic cycles to find the best-case scenario. Virtual Shaker testing is being used today by several aerospace manufacturers and space research facilities to virtually shake satellites. The benefit to these engineers is clear — saving money and reducing mission failure risk. But you don’t have to be a satellite designer to appreciate the benefits of Virtual Shaker testing. This technology can be applied to almost any industry where shaker testing is common, such as automotive, aerospace, consumer products, medical devices, and more. For more information on Virtual Shaker Testing, click here, or e-mail: info.us@lmsintl.com.

Posted in: Articles

Read More >>

Medical Design Advances Provide New Diagnostic and Treatment Options

Advances in medical design are paving the way for diagnostic and treatment options that previously were thought to be impossible. Today, surgeons, emergency medical personnel, and other healthcare professionals have a myriad of tools and techniques at their fingertips to help treat disease, create better orthopedic equipment and implants, and more accurately diagnose patients. Here is only a sampling of some of these new medical design breakthroughs.

Posted in: Articles

Read More >>

Magnetostrictive Sensing Ensures Accurate Level Monitoring

For process industries, one of the greatest challenges plant operators face is finding a sensor technology that will provide reliable measurement of liquid levels in tanks while requiring minimal attention and maintenance.

Posted in: Features, Articles

Read More >>

Multi-turn Encoders Find Home in Industrial Applications

Single-turn encoders have long been used in industrial automation to gauge angular displacement in a broad range of applications, ranging from steering control on a mobile equipment vehicle to boom extensions. A single-turn encoder is a transducer that precisely measures angular displacement over 360 degrees and assigns a value to each position. These values can be decimal, binary or grey code, and systems typically offer up to 17–bit resolution.

Posted in: Features, Articles

Read More >>

Safely Stopping Motion Using Discrete Wiring

Functional machine safety using discrete wiring is an established way to protect workers from injury, and protect companies from the expense associated with accidents and downtime.

Posted in: Features, Articles

Read More >>

Specialty Fibers Guide Light When the Going Gets Tough

In spectrometry, the more light gathered the better the results. Yet in many applications, both military and commercial, the need to protect instruments or operators from harsh environments, as well as installation constraints, make conventional line-of-sight optics impractical. Specialty fibers can offer the robustness and light-handling characteristics that such applications require.

Posted in: Articles, Features, ptb catchall, Photonics

Read More >>

Direct Spray Liquid Cooling Systems

For decades military platforms have included electronics for avionics, vehicle controls, radios, radar, sonar and fire control. From a computational standpoint most of these systems could be accomplished with relatively low power devices. There have always been higher performance electronics for applications such as radar processing, Intelligence, Surveillance, and Re - connaissance (ISR) processing, and mission computing; however, high performance electronics were relegated to stationary, benign environments. Due to bandwidth limitations of secure communications between command centers and front line troops, trends to include these computationally intense applications on vehicles and aircraft exist. From airborne platforms such as U-2 Dragon Lady and Global Hawk operating up to 70,000 feet and -65°C, to a surface-to-air missile launcher mounted on a 5-ton truck called Medium Extended Air Defense System (MEADS) in a scorching +60°C desert, the military is deploying incredible performance in harsh environments. To fit on these military vehicles, the size, weight and power (SWaP) of the electronic systems are minimized to extend the range of airborne platforms or allow ground vehicle transport with a wider range of operation. Direct spray cooling systems are enabling these programs with minimal SWaP budgets and harsh environmental requirements to use lower cost, high performance embedded electronics.

Posted in: Articles, Articles

Read More >>