Who's Who at NASA

Rob Mueller, Lead Senior Technologist, Kennedy Space Center, FL

Rob Mueller is the Lead Senior Technologist for the RASSOR (Regolith Advanced Surface Systems Operations Robot) project, as well as all Kennedy Space Center (KSC) Human Robotics Systems. The RASSOR mining robot will collect soil (known as regolith) on the moon or Mars so it can be processed into rocket propellants, breathable air, water, and other consumable commodities as well as manufacturing and construction materials feed stocks.

Posted in: Who's Who, Homepage

Read More >>

Dr. Andrew Watson, Senior Scientist for Vision Research, Ames Research Center, Moffett Field, CA

Dr. Andrew Watson works on models of human vision and applies them to visual technology. The Founder and Editor in Chief of the Journal of Vision, he is also a Fellow of the Optical Society of America, of the Association for Research in Vision and Ophthalmology, and of the Society for Information Display. Watson received a 2011 Presidential Rank Award from the President of the United States. NASA Tech Briefs: What is the Spatial Standard Observer (SSO)? Dr. Watson: For many years we’ve been working on computational models of the early stages of human vision. Part of the purpose of that research is to develop engineering tools that could be used in the design of display technology, compression algorithms, and things of that kind. We have taken a lot of our research and compressed it into a simple engineering tool, the Spatial Standard Observer, which can be used to predict the visibility of artifacts, for example, in a display, or the legibility of information in a display — any case where you have imaging technology that is going to be used by a human observer.

Posted in: Who's Who

Read More >>

Bob Reisse, ALHAT Project Manager, Langley Research Center, Hampton, VA.

Bob Reisse coordinates the design and testing of ALHAT (Autonomous Landing Hazard Avoidance Technology) sensors. In December, ALHAT instruments were melded to HUEY helicopters, which used sensors and an integrated computer system to provide guidance and assist pilots. The technology will also enable landing near specific resources and locations across the solar system, including the moon, Mars, and other asteroids. NASA Tech Briefs: What does Autonomous Landing Hazard Avoidance Technology look like? Bob Reisse: ALHAT is a series of sensors that can determine or measure the area of interest that we’re trying to get to on the ground. In addition to that, we have a standard altimeter just to help us navigate to the right location. The third [part] is a laser Doppler system, which measures attitude and velocity relative to the ground. As you can imagine, an inertial measurement unit (IMU) tells you your velocity, but it doesn’t tell you how you’re doing relative to the ground or to the area of interest as you’re approaching a planetary body.

Posted in: Who's Who

Read More >>

David Mitchell, MAVEN Project Manager, Goddard Space Flight Center, Greenbelt, MD

David Mitchell is the project manager of the MAVEN mission, which will examine environmental changes on Mars. MAVEN instruments will look beyond the planet's surface and provide a better understanding of solar interactions, magnetic fields, and the atmosphere in general. NASA Tech Briefs: What is the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft? David Mitchell: MAVEN is a Mars orbiting spacecraft, which will study the Mars upper atmosphere, the interactions with the Sun, and will obtain a better understanding of climate change at Mars over time. It will go into an elliptical orbit with an orbital period of 4.5 hours. The closest that MAVEN will get to the Mars surface in this orbit is approximately 125 kilometers.

Posted in: Who's Who

Read More >>

Chuck Jorgensen, Chief Scientist for Neuro Engineering, Ames Research Center, Moffett Field, CA

Chuck Jorgensen, Chief Scientist for the Neuro Engineering Lab at NASA Ames Research Center, in Moffett Field, CA, currently studies biolelectrical interfacing and the detection of human emotion and visualization. His research in subvocal speech was a 2006 finalist for the Saatchi & Saatchi international prize for world-changing ideas. NASA Tech Briefs: What are some of the applications for bioelectrical interfacing? Chuck Jorgensen: If you put someone in a constrained suit, like a space suit or a firefighter or hazmat suit, the pressurization that’s occurring from the breathing apparatus, as well as the limitations on finger movement in a pressurized suit, make doing tasks like typing or small joystick control very difficult to do, or actually dealing with, say, an external robotics device that you might want to control with this system.

Posted in: Who's Who

Read More >>

Dr. Carlos Calle, Lead Scientist, Electrostatics and Surface Physics Lab, Kennedy Space Center, FL

Dr. Carlos Calle, lead scientist in Kennedy Space Center’s Electrostatics and Surface Physics Lab, is developing instrumentation that addresses the problem of electrostatic dust. The technology will be used for future exploration missions on Mars and the Moon.

Posted in: Who's Who

Read More >>

Dr. Greg Chavers, Test Lead, Marshall Space Flight Center, Huntsville, AL

Dr. Greg Chavers, test lead at the Marshall Space Flight Center in Huntsville, Alabama, helped to design the “Mighty Eagle” robotic prototype lander. The vehicle, which can guide itself to a specified target, flew “open loop” to an altitude of 100 feet in late August. NASA Tech Briefs: What is the Mighty Eagle? Dr. Greg Chavers: The Mighty Eagle is a test vehicle, and it was built originally to demonstrate that we can control a small vehicle that is dynamically similar to a small robotic lander that could land on the moon or other airless body. We started with a flight design concept and built this vehicle with a propulsion system that uses pulse-width modulated thrust, with very fast-acting valves so they’re either on or off. They’re not throttled to control the altitude and the attitude of the vehicle.

Posted in: Who's Who

Read More >>