NASA Tech Needs

Moisture Release Technologies

A company seeks technologies enabling a woven or nonwoven substrate to contain liquid/fluid that can be released by applying pressure (to yield a moist/wet substrate). They are interested in solutions that will enable water or other liquids/ fluids to be contained within a substrate and then released under moderate pressure (for example, by squeezing the substrate in your hand). The technology solution must be able to incorporate sufficient liquid content in the substrate so that when pressure is applied, approximately 75% of that substrate unit becomes moist. Respond to this TechNeed at: www.techbriefs.com/tn/200906c.htmlEmail: nasatech@yet2.com Phone: 781-972-0600

Posted in: NASA Tech Needs, Tech Needs

Read More >>

Binder Solutions for the Manufacture of Molds and, Cores in Metal Castings

Binders used for molding are typically self-setting, so that after mixing two or more binder components into sand, there is a short delay before the mixture starts to set hard. Binders used for core-making are typically gas-cured. A company seeks an environmentally acceptable binder system that could be based on inorganic, “clean” organic, or hybrid derivatives, and offers an immediate advantage over current systems in terms of health, safety, and environmental issues. Respond to this TechNeed at: www.techbriefs.com/tn/200906d.htmlEmail: nasatech@yet2.com Phone: 781-972-0600

Posted in: NASA Tech Needs, Tech Needs

Read More >>

Gaseous Helium (GHe) Conservation and Recovery

John C. Stennis Space Center provides rocket engine propulsion testing for the NASA space programs. Since the development of the Space Shuttle, every Space Shuttle Main Engine (SSME) has gone through acceptance testing before going to Kennedy Space Center for integration into the Space Shuttle. The SSME is a large cryogenic rocket engine that used Liquid Oxygen (LO2) and Liquid Hydrogen (LH2) as propellants. Due to the extremely cold cryogenic conditions of this environment, an inert gas, helium, is used as a purge for the engine since it can be used without freezing in the cryogenic environment. As NASA moves to the development of the new ARES launch system, the main engines as well as the upper stage engine will use cryogenic propellants, and will require gaseous helium during the development testing of each of these engines. The main engine for the ARES will be similar in size to the SSME. Technology Needs Due to the size of the SSME and the test facilities required to test the engine, extremely large quantities of helium are used during testing each year. This requirement makes Stennis one of the world’s largest users of gaseous helium, which is a non-renewable natural resource. Cost of helium is increasing as the supply diminishes. The cost and shortage of helium are beginning to impact testing of the rocket engines for the space propulsion systems. Innovative solutions are needed for efficient, cost-effective, in-situ methods to recapture helium used during the engine purging and testing processes, to re-clean the captured helium, to re-pressurize it, and then to reintroduce it for reuse. Research into technologies in these areas, demonstration of the technology capability, and conceptual design for the technology installation at Stennis are desired to assist in the helium reuse. Technology Challenges Helium used in rocket engine purge must meet very specific cleanliness standards. One of the challenges will be to develop an in-situ, on-site helium re-utilization system capable of recycling the helium to cleanliness standards requirements. The technologies developed to recapture and clean the helium must be cost-effective and able to perform the recycling process in an in-situ rocket engine test area environment. Such technologies will be required to comply with all safety and quality standards required in this environment. More Information For additional information, contact John Lansaw at Stennis Space Center, 228-688-1962, or visit nasa@techbriefs.com.

Posted in: NASA Tech Needs

Read More >>

3D and/or Flock Printing Technology

A company seeks a printing capability and/or technology that creates a physical 3D texture that is tactile and soft (but not rubbery) in nature onto a flat or curved plastic surface made of polyethylene, polypropylene, or polyester material. This 3D printing enhances the product experience for the consumer by providing a more tactile surface that can increase grip, provide a pleasant texture/feeling, and/or present a less plain/sterile surface. Materials should be FDA food-safe, as well as safe when in contact with skin. Respond to this TechNeed at: www.techbriefs.com/tn/200905c.html Email: nasatech@yet2.com Phone: 781-972-0600

Posted in: NASA Tech Needs

Read More >>

High-Temperature Brine Viscosifier

A company seeks to increase the viscosity of brine solutions containing both mono and multivalent salts. Targeted brines may contain up to 80% weight of salt. Viscosity must stay the same up to 150°C. The thickened brine should have a yield value of the order of 1Pa (or higher) and a shear thinning behavior. The overall rheology profile should be comparable to xanthan gum solution in fresh water. The aim of the viscosity increase is to suspend solid particles. Respond to this TechNeed at: www.techbriefs.com/tn/200905d.html Email: nasatech@yet2.com Phone: 781-972-0600

Posted in: NASA Tech Needs

Read More >>

Advanced Computational Fluid Dynamics - Mesh Generation

NASA’s work in advanced aeronautics and space vehicle development relies on advanced Computational Fluid Dynamics (CFD) codes such as FUN3D that rely on numerical solution of equations of motion over a discrete mesh of points in three dimensions. A judicious placement of points is required to optimize computing efficiency without greatly reducing the sensitivity and accuracy of the calculations. Rapid generation of such a mesh and its subsequent adaptation to better resolve the problem physics are critical to the application of CFD to complex real-world problems of interest. What are the Challenges? Improved mesh generators are needed to support programs in aerothermodynamics and fluid dynamics in general. More specifically, an anisotropic 3D mesh generator (or re-mesher) is needed that can be driven by a spatially varying metric tensor field, and which specifies mesh spacing along three orthogonal directions. The mesh generator must accommodate cell aspect ratio requests of at least 10,000:1 even in the presence of a curved metric tensor field to enable high Reynolds number finite-volume CFD applications. Furthermore, in regions of high anisotropy (not necessarily bounded by a vehicle surface), mesh cells should be dominantly layers of semi-structured hexahedra or triangular prisms to allow non-dissipative capture of bow shocks, boundary layers, free shear layers, wakes, contact surfaces, and so forth. What is NASA Doing? NASA currently conducts aerothermodynamic and fluid dynamics analyses of vehicles (heating rates, pressures, etc.) through the use of state-ofthe- art CFD codes. The mesh generation methods in use primarily rely on advancing front/layer, and/or Delaunay algorithms to provide the mesh of points needed to describe the vehicle and the surrounding domain of interest for the analysis. While current methods have been successfully applied to complex problems, clearly additional research and development is needed in the area of mesh generation to reduce human involvement and increase robustness. We would like to provide uncertainty estimates (error bars) for the computational results delivered much like experimentalists do for their results. A critical component enabling this capability is mesh adaptation, whereby an existing mesh is adapted to improve the solution based on the problem physics and/or a solution error estimate. The criteria that drive the mesh adaptation are specified via a Riemannian metric tensor field. Within the field, a 3x3 (2x2 in 2 dimensions) symmetric positive definite tensor defines the desired local spacing constraints for the mesh whereby its eigenvalues represent the desired spacing along the direction of the corresponding eigenvectors. Current mesh adaptation technology in use does not easily allow us to do this in the presence of high element anisotropy in three dimensions while maintaining element quality. If the desired mesh generator can be developed, we will gain control over spatial discretization errors for CFD codes. This will allow us to focus on physical modeling errors and automate the process of obtaining a solution for a given application with bounded discretization errors. NASA’s immediate needs include CFD modeling of the exploration vehicles now under development to replace the shuttle for transport to the International Space Station and eventually for transport to the Moon and beyond, as well as advanced supersonic and hypersonic air vehicle development, both for NASA (Commercial) and military applications. The astrophysics, climate analysis, and hemodynamics (blood flow) fields may also have a use for such a capability, i.e., other types of fluid dynamics applications. More Information For more information, contact Dr. Bill Kleb at 757-812-1805 or nasa@techbriefs.com.

Posted in: NASA Tech Needs

Read More >>

Generating Sodium Hydroxide from Sodium Sulfate and Calcium Hydroxide

A company produces crystalline sodium sulfate as a byproduct, using sodium hydroxide as one of many feeds within the process. They seek to use the available compounds to produce it in situ. The company seeks a process that uses sodium sulfate and calcium oxide to produce sodium hydroxide, and could accept an aqueous product from a process with the lower limit being about 8% caustic solution with moderate sulfate content. Low calcium content in the caustic is important. The company can accept the formation of gypsum as a by-product of the process. Respond to this TechNeed at:www.techbriefs.com/tn/200904c.html Email: nasatech@yet2.com Phone: 781-972-0600

Posted in: NASA Tech Needs

Read More >>

White Papers

Evaluating the Chemistry of Brake Pads using SEM-EDS
Sponsored by Thermo Fisher
5 Real-Time, Ethernet-Based Fieldbuses Compared
Sponsored by Kingstar
Safety in SoCs
Sponsored by Synopsys
The Simple Guide to a Life Science Recall
Sponsored by Verse Solutions
How the Laser, Optic, & Photonic Industries Benefit from Electropolishing
Sponsored by Able Electropolishing
Breakthrough Energy Innovation: Ambition and Urgency
Sponsored by ANSYS

White Papers Sponsored By:

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.