Features

Testing Devices Garner Data on Insulation Performance

A NASA-developed instrument tests insulation for everything from racecars to refrigerators. According to James Fesmire, senior principal investigator of the Cryogenics Test Laboratory at NASA’s Kennedy Space Center, “When we talk about cryogenic tanks and deep spacecraft protection, we can easily talk about hot water heaters and engine compartments for NASCAR at the same time.”

Posted in: Articles, Measuring Instruments

Read More >>

NASA, Then and Now

Next month marks the 100th anniversary of the National Advisory Committee for Aeronautics (NACA), NASA’s predecessor. Born on March 3, 1915, NACA changed the face of U.S. aviation, establishing a legacy of innovative aeronautical research that continues at NASA today.

Posted in: Articles, UpFront, Aviation

Read More >>

Tissue-Building Technique Could Someday Build Organs

A new instrument developed at Brown University could someday build replacement human organs the way electronics are assembled today. In this case, the parts are 3D microtissues containing thousands to millions of living cells. The device is called “BioP3” for pick, place, and perfuse. Because it allows assembly of larger structures from small living microtissue components, future versions of BioP3 could be used to manufacture organs such as livers, pancreases, or kidneys.

Posted in: Articles, UpFront

Read More >>

Google Glass for Industrial Automation

A new concept uses Google Glass for operating machinery, with all of the benefits delivered by wearable computing in an industrial environment. With Google’s Web-enabled glasses, status or dialog messages can be projected via a head-up display directly into a person’s field of vision. Online information and communication is also possible with this innovative device, and error messages can be acknowledged using a touchpad.

Posted in: Articles, Optics, Machinery & Automation

Read More >>

Energy Efficiency in Machine Tools

Discussions of the efficient use of energy have become more frequent in many sectors of industry. Machine tools comprise numerous motors and auxiliary components whose energy consumption can vary strongly during machining. The main spindle drive, for example, and the coolant system work near their rated power during roughing with a high stock removal rate, while the power consumption during finishing is significantly lower. There is a very close interdependence between the individual components and subassemblies of a machine tool and aspects of productivity and quality. From a detailed examination of manufacturing processes to the power consumption of individual components, potential for savings can be evaluated and measures can be defined for the efficient use of energy.

Posted in: Application Briefs, Articles, Energy Efficiency, Motors & Drives, Machinery & Automation

Read More >>

Robust Gimbal System for Small-Payload Manipulation

This is a low-mass, small-volume gimbal unit. NASA’s Jet Propulsion Laboratory, Pasadena, California Spaceborne gimbal systems are typically bulky with large footprints. Such a gimbal system may consist of a forked elevation stage rotating on top of the azimuth motor, and occupy a large volume. Mounting flexibility of such a system may be limited.

Posted in: Articles, Briefs, TSP, Motors & Drives

Read More >>

A Phase-Changing Pendulum to Control Spherical Robots and Buoy Sensors

The pendulum adds new flexibility to motion control. NASA’s Jet Propulsion Laboratory, Pasadena, California A novel mechanical control system has been proposed for spherical robots to be used as multifunctioning sensor buoys in areas with ambient forces such as winds or currents. The phase-changing pendulum has been specifically designed for Moballs, a self-powered and controllable multifunctioning spherical sensor buoy to be used in the Arctic and Antarctica, or in other solar system planets or moons with atmosphere, such as Mars or Titan. The phase-changing pendulum has been designed to function in different phases: 1) When used as the spherical buoy, the Moball needs to take advantage of external forces such as the wind for its mobility. With no constraints, it could keep the center of mass in the geometric center of the sphere to facilitate the sphere’s movement. 2) However, as soon as the Moball needs to slow down or stop, the sphere’s center of mass can be lowered. 3) Furthermore, the phase-changing pendulum could lean to the sides, thereby changing the direction of the Moball by biasing its center of mass to the corresponding side. The Moballs could take advantage of such a novel phase-changing pendulum to go as fast as possible using the ambient winds, and to stop or steer away when facing hazardous objects or areas (such as the gullies), or when they need to stop in an area of interest in order to perform extensive tests. It is believed that this is the very first time that a pendulum has been suggested to control a spherical structure where both the length and the angle of the pendulum are adjustable in order to control the sphere. 4) Finally, the phase-changing pendulum could also control the sphere in the absence of wind. The spherical sensor buoys or Moballs could use the stored harvested energy (e.g., from sunlight or earlier wind-driven motions) to move the phase-changing pendulum and create torque, and make the spherical sensor buoys initiate rolling with the desired speed and direction. This is especially useful when the spheres need to get close to an object of interest in order to examine it.

Posted in: Articles, Briefs

Read More >>

White Papers

Linear Motors Application Guide
Sponsored by Aerotech
Antenna Basics
Sponsored by Rohde and Schwarz
UV-/Light-Curing Adhesives Improve Manufacturing Productivity
Sponsored by DELO
Measurement of Harmonics using Spectrum Analyzers
Sponsored by Rohde and Schwarz A and D
Remediation and Prevention of Moisture in Electronics
Sponsored by multisorb technologies
Linear Guides For The Next Generation Of Medical Machines
Sponsored by IKO

White Papers Sponsored By: