Images of Change for iPad

NASA’s Jet Propulsion Laboratory, Pasadena, California Images of Change provides a user-friendly mobile interface for exploring an extensive gallery of land-based and space-based images showing dramatic change over time on Earth. Hosted on NASA’s Global Climate Change website, Images of Change is designed to raise awareness of climate change, inspire curiosity and interest in the programs that create the images, and highlight the importance of global climate change research.

Posted in: Briefs, Green Design & Manufacturing, Physical Sciences


Characteristics of the Spliced Kennedy Space Center Doppler Radar Wind Profiler Database

Marshall Space Flight Center, Alabama NASA relies on the Natural Environments (NE) Branch located at Marshall Space Flight Center (MSFC) to provide databases that represent the wind magnitudes and wind changes expected on day-of-launch (DOL) for vehicle programs that MSFC NE supports. MSFC NE has traditionally utilized weather balloon measurements to generate the wind profiles used in DOL loads and trajectory simulations. However, balloon measurement archives have three limitations in that (1) they do not contain a large enough sample to adequately represent the wind environment at extreme percentiles, (2) balloons could misrepresent the aloft wind environment due to their rise rate and drift characteristics, and (3) the Space Shuttle Program’s operational requirements significantly drove the atmosphere databases’ development. To help mitigate these limitations, MSFC NE used the 50-MHz Doppler Radar Wind Profiler (DRWP) at Kennedy Space Center (KSC) to validate balloon measurements on DOL during the SSP.

Posted in: Briefs, Green Design & Manufacturing, Physical Sciences


Habitat Water Wall for Water, Solids, and Atmosphere Recycle and Reuse

This technology can be used in wastewater treatment plants. A method was developed that allows water recycling, air treatment, thermal control, and solid residuals treatment and recycle to be removed from the usable habitat volume and placed in the walls of a radiation-shielding water wall. This design also provides a mechanism to recover and reuse water treatment (solid) residuals to strengthen the habitat shell.

Posted in: Briefs, Green Design & Manufacturing, Recycling Technologies, Mechanical Components


Autonomous Robots Keep Warehouse Running Green

YLOG, a startup company in Austria, uses an intelligent and very environmentally friendly logistics system that is winning an increasing number of customers. The technology makes use of individual, freely moving Autonomous Intelligent Vehicles (AiVs) that detect each other, observe right-of-way rules, recognize one-way routes, and complete their tasks fully autonomously without intervention from or coordination by a central computer.

Posted in: Application Briefs, Articles, Green Design & Manufacturing, Motion Control, Motors & Drives, Machinery & Automation, Robotics


Emily Wilson, Scientist, Goddard Space Flight Center, Greenbelt, MD

Emily Wilson developed a miniaturized laser heterodyne radiometer (mini-LHR) to measure the emissions of carbon dioxide and methane from melting permafrost. Wilson’s technology will be one of several NASA instruments sent to Alaska in June to analyze trace gases in the region’s atmosphere.

Posted in: Who's Who, Environmental Monitoring, Greenhouse Gases, Lasers & Laser Systems, Measuring Instruments, Monitoring


High-Performance Photocatalytic Oxidation Reactor System

Airborne volatile organic chemicals are oxidized using blue LEDs, fiber optics, and visible light-activated catalysts for space and terrestrial air purification. Marshall Space Flight Center, Alabama As crewed space missions extend beyond low Earth orbit, the need to reliably recover potable water is critical. Aboard the International Space Station (ISS), the water is recycled from cabin humidity condensate, urine distillate, and hygiene wash wastes. In spacecraft cabin air environments, off-gassing from equipment, human metabolism, and human personal care products contributes to significant airborne concentrations of volatile organic compounds (VOCs). These polar and water-soluble compounds ultimately dissolve into the humidity condensate and stress the process load, logistics costs, and lifecycle requirements of the water processing systems. The aim of this effort was to develop the High Performance Photocatalytic Oxidation Reactor System (HPPORS) technology for the destruction of airborne VOCs prior to reaching the water processing systems. This innovation will reduce the logistics costs and lifecycle requirements of water processing systems, and help extend NASA missions to include long-duration space habitation and lunar and Mars colonization missions.

Posted in: Briefs, Aerospace, Green Design & Manufacturing, Recycling Technologies, Remediation Technologies, LEDs, Lighting, Materials, Fiber Optics, Photonics


A Large-Eddy Simulation Model of the Atmospheric Boundary Layer

The model includes the interaction of various physical processes, including turbulence, clouds, precipitation, and radiation. NASA’s Jet Propulsion Laboratory, Pasadena, California The atmospheric boundary layer is the lowermost layer of the atmosphere and is host to a plethora of physical processes that significantly affect weather, climate, and air quality. In many applications, detailed information about the boundary layer is required at high temporal and spatial resolution. The main purpose of the current model is to provide accurate and finely resolved inspace and time predictions of the atmospheric boundary layer. High-resolution predictions of the boundary layer are typically pertinent in the development and evaluation of weather and climate models, in fundamental studies of atmospheric dynamics including clouds and precipitation, the dispersion of pollutants, and the development of remote sensing instruments.

Posted in: Briefs, Green Design & Manufacturing, Electronics & Computers, Simulation Software, Software


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.