Imaging

Automated Imaging System Analyzes Underground Root Systems

Researchers from the Georgia Institute of Technology and Penn State University have developed an automated imaging technique for measuring and analyzing the root systems of mature plants. The technique, believed to be the first of its kind, uses advanced computer technology to analyze photographs taken of root systems in the field. The imaging and software are designed to give scientists the statistical information they need to evaluate crop improvement efforts.“We’ve produced an imaging system to evaluate the root systems of plants in field conditions,” said Alexander Bucksch, a postdoctoral fellow in the Georgia Tech School of Biology and School of Interactive Computing. “We can measure entire root systems for thousands of plants to give geneticists the information they need to search for genes with the best characteristics.”Imaging of root systems has, until now, largely been done in the laboratory, using seedlings grown in small pots and containers. Such studies provide information on the early stages of development, and do not directly quantify the effects of realistic growing conditions or field variations in water, soil, or nutrient levels.The technique developed by Georgia Tech and Penn State researchers uses digital photography to provide a detailed image of roots from mature plants in the field. Individual plants to be studied are dug up and their root systems washed clean of soil. The roots are then photographed against a black background using a standard digital camera pointed down from a tripod. A white fabric tent surrounding the camera system provides consistent lighting.The resulting images are then uploaded to a server running software that analyzes the root systems for more than 30 different parameters, including the diameter of tap roots, root density, the angles of brace roots, and detailed measures of lateral roots.SourceAlso: Learn about Strobing to Enhance Display Legibility.

Posted in: Electronics & Computers, Cameras, Imaging, Software, Test & Measurement, Measuring Instruments, News

Read More >>

Imaging System Obtains More Color Information than Human Eye

Researchers at the University of Granada have designed a new imaging system capable of obtaining up to twelve times more color information than the human eye and conventional cameras, which implies a total of 36 color channels. The important scientific development will facilitate the easy capture of multispectral images in real time.The technology could be used in the not-too-distant future to create new assisted vehicle driving systems, to identify counterfeit bills and documents, or to obtain more accurate medical images than those provided by current options.The scientists, from the Color Imaging Lab group at the Optics Department, University of Granada, have designed the new system using a new generation of sensors, in combination with a matrix of multispectral filters to improve their performance.Transverse Field Detectors (TFDs) extract the full color information from each pixel in the image without the need for a layer of color filter on them.In order to do so, the TFDs take advantage of a physical phenomenon by virtue of which each photon penetrates at a different depth depending on its wavelength, i.e., its color. In this way, by collecting these photons at different depths on the silice surface of the sensor, the different channels of color can be separated.SourceAlso: Learn about Imaging Space System Architectures.

Posted in: Cameras, Imaging, Sensors, Detectors, Medical, News, Automotive

Read More >>

Underwater Robot Skims for Port Security

MIT researchers unveiled an oval-shaped submersible robot, a little smaller than a football, with a flattened panel on one side that it can slide along an underwater surface to perform ultrasound scans.Originally designed to look for cracks in nuclear reactors’ water tanks, the robot could also inspect ships for the false hulls and propeller shafts that smugglers frequently use to hide contraband. Because of its small size and unique propulsion mechanism — which leaves no visible wake — the robots could, in theory, be concealed in clumps of algae or other camouflage. Fleets of them could swarm over ships at port without alerting smugglers and giving them the chance to jettison their cargo.Sampriti Bhattacharyya, a graduate student in mechanical engineering, built the main structural components of the robot using a 3-D printer. Half of the robot — the half with the flattened panel — is waterproof and houses the electronics. The other half is permeable and houses the propulsion system, which consists of six pumps that expel water through rubber tubes.Two of those tubes vent on the side of the robot opposite the flattened panel, so they can keep it pressed against whatever surface the robot is inspecting. The other four tubes vent in pairs at opposite ends of the robot’s long axis and control its locomotion.SourceAlso: Learn about Underwater Localization for Transit and Reconnaissance Autonomy.

Posted in: Imaging, Manufacturing & Prototyping, Rapid Prototyping & Tooling, Motion Control, Power Transmission, Machinery & Automation, Robotics, News

Read More >>

'Squid Skin' Metamaterial Yields Vivid Color Display

The quest to create artificial "squid skin" — camouflaging metamaterials that can "see" colors and automatically blend into the background — is one step closer to reality, thanks to a color-display technology by Rice University's Laboratory for Nanophotonics (LANP).The new full-color display technology uses aluminum nanoparticles to create the vivid red, blue, and green hues found in today's top-of-the-line LCD televisions and monitors.The breakthrough is the latest in a string of recent discoveries by a Rice-led team that set out in 2010 to create metamaterials capable of mimicking the camouflage abilities of cephalopods — the family of marine creatures that includes squid, octopus, and cuttlefish.LANP's new color display technology delivers bright red, blue, and green hues from five-micron-square pixels that each contains several hundred aluminum nanorods. By varying the length of the nanorods and the spacing between them, LANP researchers Stephan Link and Jana Olson showed they could create pixels that produced dozens of colors, including rich tones of red, green, and blue that are comparable to those found in high-definition LCD displays.

Posted in: Imaging, Displays/Monitors/HMIs, Materials, Nanotechnology, News

Read More >>

Unmanned "Urban Beat Cop" Surveillance System Protects Soldiers

In a non-combat environment, information is typically collected by local law enforcement officers who are "walking their beat." Air Force expeditionary forces in Afghanistan requested a system that would give them similar situational awareness in Afghan villages and other remote areas, but without human participation or requiring them to "walk a beat." So, the Air Force and a small business partner recently developed and tested in the field a small, unmanned aircraft system (SUAS) that allows U.S. military forces to perform strategic reconnaissance while staying out of harm's way.

Posted in: Video, Imaging, Aerospace, Aviation, Defense, News

Read More >>

Custom Surface Inspection System for Safety-Critical Processes

Researchers have engineered a high-precision modular inspection system that can be adapted on a customer-specific basis and integrated into the production process. Before a workpiece leaves the production plant, it is subjected to rigorous inspection. For safety-critical applications such as in the automotive or aerospace industries, manufacturers can only use the most impeccable parts.

Posted in: Cameras, Imaging, Manufacturing & Prototyping, Industrial Controls & Automation, Consumer Product Manufacturing, Test & Measurement, Measuring Instruments, Aerospace, News, Automotive

Read More >>

New Laser Technology to Make 2020 Mission to Mars

NASA announced recently that laser technology originally developed at Los Alamos National Laboratory has been selected for its new Mars mission in 2020. SuperCam, which builds upon the successful capabilities demonstrated aboard the Curiosity Rover during NASA’s current Mars Mission, will allow researchers to sample rocks and other targets from a distance using a laser.

Posted in: Electronics & Computers, Electronics, Imaging, Photonics, Lasers & Laser Systems, Sensors, Detectors, Test & Measurement, Measuring Instruments, Aerospace, Machinery & Automation, News

Read More >>

NASA Engineer Set to Complete First 3D-Printed Space Cameras

By the end of September, NASA aerospace engineer Jason Budinoff is expected to complete the first imaging telescopes ever assembled almost exclusively from 3D-manufactured components.Under his multi-pronged project, funded by Goddard’s Internal Research and Development (IRAD) program, Budinoff is building a fully functional, 50-millimeter (2-inch) camera whose outer tube, baffles and optical mounts are all printed as a single structure. The instrument is appropriately sized for a CubeSat, a tiny satellite comprised of individual units each about four inches on a side. The instrument will be equipped with conventionally fabricated mirrors and glass lenses and will undergo vibration and thermal-vacuum testing next year.Budinoff also is assembling a 350-millimeter (14-inch) dual-channel telescope whose size is more representative of a typical space telescope.Should he prove the approach, Budinoff said NASA scientists would benefit enormously — particularly those interested in building infrared-sensing instruments, which typically operate at super-cold temperatures to gather the infrared light that can be easily overwhelmed by instrument-generated heat. Often, these instruments are made of different materials. However, if all the instrument’s components, including the mirrors, were made of aluminum, then many of the separate parts could be 3D printed as single structures, reducing the parts count and material mismatch. This would decrease the number of interfaces and increase the instrument’s stability.SourceAlso: Learn about an Image Processing Method To Determine Dust Optical Density.

Posted in: Cameras, Imaging, Photonics, Optics, Manufacturing & Prototyping, Rapid Prototyping & Tooling, Aerospace, RF & Microwave Electronics, News

Read More >>

Researchers Extract Audio from Visual Information

Researchers at MIT, Microsoft, and Adobe have developed an algorithm that can reconstruct an audio signal by analyzing minute vibrations of objects depicted in video. In one set of experiments, the team was able to recover intelligible speech from the vibrations of a potato-chip bag photographed from 15 feet away through soundproof glass."When sound hits an object, it causes the object to vibrate,” says Abe Davis, a graduate student in electrical engineering and computer science at MIT and first author on the new paper. “The motion of this vibration creates a very subtle visual signal that’s usually invisible to the naked eye. People didn’t realize that this information was there.”Reconstructing audio from video requires that the frequency of the video samples — the number of frames of video captured per second — be higher than the frequency of the audio signal. In some of their experiments, the researchers used a high-speed camera that captured 2,000 to 6,000 frames per second. The researchers’ technique has obvious applications in law enforcement and forensics, but Davis is more enthusiastic about the possibility of what he describes as a “new kind of imaging.”“We’re recovering sounds from objects,” he says. “That gives us a lot of information about the sound that’s going on around the object, but it also gives us a lot of information about the object itself, because different objects are going to respond to sound in different ways.” In ongoing work, the researchers have begun trying to determine material and structural properties of objects from their visible response to short bursts of sound. Source Also: Learn about Enhanced Auditory Alert Systems.

Posted in: Electronics & Computers, Cameras, Video, Imaging, Software, News

Read More >>

Cassini Spacecraft Reveals Geysers and More on Saturn Moon

Scientists using mission data from NASA’s Cassini spacecraft have identified 101 distinct geysers erupting on Saturn’s icy moon Enceladus. Their analysis suggests it is possible for liquid water to reach from the moon’s underground sea all the way to its surface.

Posted in: Imaging, Aerospace, News

Read More >>