Imaging

Head-Worn Display Concepts for Ground Operations for Commercial Aircraft

This display enables a higher level of safety during ground operations, including taxiway navigation and situational awareness. Langley Research Center, Hampton, Virginia The Integrated Intelligent Flight Deck (IIFD) project, part of NASA’s Aviation Safety Program (AvSP), comprises a multi-disciplinary research effort to develop flight deck technologies that mitigate operator-, automation-, and environment-induced hazards. Toward this objective, the IIFD project is developing crew/vehicle interface technologies that reduce the propensity for pilot error, minimize the risks associated with pilot error, and proactively overcome aircraft safety barriers that would otherwise constrain the next full realization of the Next Generation Air Transportation System (NextGen). Part of this research effort involves the use of synthetic and enhanced vision systems and advanced display media as enabling crew-vehicle interface technologies to meet these safety challenges.

Posted in: Imaging, Displays/Monitors/HMIs, Aviation, Articles, Briefs, TSP, Aeronautics

Read More >>

Flight Imagery Recorder Locator (FIRLo) and High-Temperature Radome

This technology is applicable to the commercial airline industry for locating “black boxes.” NASA’s Jet Propulsion Laboratory, Pasadena, California LDSD (Low Density Supersonic Decelerator) is a Mars EDL (entry, descent, and landing) Technology Development Project that launches three test vehicles out of the Pacific Missile Range Facility in Kauai. On the test vehicle, most mission science data can be recorded safely on land; however, high-speed and high-resolution imagery cannot be telemetered due to bandwidth constraints. Therefore, all information had to be recorded solely onboard the test vehicle; this unit is called the flight imagery recorder (FIR). A typical commercial airliner “black box” is only capable of recording on the order of gigabytes of data, whereas this work required on the order of terabytes (a few orders of magnitude larger).

Posted in: Imaging, Communications, Articles, Briefs

Read More >>

Imaging Space System Architectures Using a Granular Medium as a Primary Concentrator

Higher-resolution optics provide improved hyperspectral imaging for ocean and land monitoring, as well as exoplanet detection. NASA’s Jet Propulsion Laboratory, Pasadena, California Typically, the cost of a space observatory is driven by the size and mass of the primary aperture. Generally, a monolithic aperture is much heavier and complex to fabricate (hence, more costly) than an aperture of the same size but composed of much smaller units. Formation flying technology, as applied to swarm systems in space, is an emerging discipline.

Posted in: Physical Sciences, Imaging, Briefs, TSP

Read More >>

Novel Hemispherical Dynamic Camera for EVAs

A novel optical design for imaging systems is able to achieve an ultra-wide field of view (UW-FOV) of up to 208°. The design uses an integrated optical design (IOD). The UW-FOV optics design reduces the wasted pixels by 49% when compared against the baseline fisheye lens. The IOD approach results in a design with superior optical performance and minimal distortion.

Posted in: Physical Sciences, Imaging, Briefs

Read More >>

Reducing Drift in Stereo Visual Odometry

The drift was reduced from an uncorrected 47 cm to just 7 cm. Visual odometry (VO) refers to the estimation of vehicle motion using onboard cameras. A common mode of operation utilizes stereovision to tri angulate a set of image features, track these over time, and infer vehicle motion by computing the apparent point cloud motion with respect to the cameras. It has been observed that stereo VO is subject to drift over time.

Posted in: Imaging, Briefs

Read More >>

Reducing Drift in Stereo Visual Odometry

The drift was reduced from an uncorrected 47 cm to just 7 cm. Visual odometry (VO) refers to the estimation of vehicle motion using onboard cameras. A common mode of operation utilizes stereovision to tri angulate a set of image features, track these over time, and infer vehicle motion by computing the apparent point cloud motion with respect to the cameras. It has been observed that stereo VO is subject to drift over time.

Posted in: Imaging, Briefs

Read More >>

Resource-Constrained Application of Support Vector Machines to Imagery

Fast computation of the SVM decision function over an image using minimal RAM. Machine learning techniques have shown considerable promise for automating common visual inspection tasks. For example, Support Vector Machine (SVM) classifiers that have been learned from labeled training data deliver strong detection performance both for finding human faces in photographs and locating geologic landforms such as craters and volcanoes in planetary images gathered by spacecraft. However, SVMs are computationally expensive to apply to an image using the traditional spatial scanning method in which a rectangular window is slid across the image one pixel at a time and the SVM is evaluated on each patch of pixels under the window. The new software uses small fast Fourier transforms (FFTs) and the overlap- and-add technique from signal processing to quickly and efficiently compute the exact SVM decision function over an entire image using minimal random access memory (RAM).

Posted in: Imaging, Briefs

Read More >>

Visual Image Sensor Organ Replacement

This innovation is a system that augments human vision through a technique called “Sensing Super-position” using a Visual Instrument Sensory Organ Replacement (VISOR) device. The VISOR device translates visual and other sensors (i.e., thermal) into sounds to enable very difficult sensing tasks.

Posted in: Bio-Medical, Software, Imaging & Diagnostics, Biosensors, Imaging, Displays/Monitors/HMIs, Sensors, Medical, Briefs, MDB

Read More >>

Support Routines for In Situ Image Processing

This software consists of a set of application programs that support ground-based image processing for in situ missions. These programs represent a collection of utility routines that perform miscellaneous functions in the context of the ground data system. Each one fulfills some specific need as determined via operational experience. The most unique aspect to these programs is that they are integrated into the large, in situ image processing system via the PIG (Planetary Image Geometry) library. They work directly with space in situ data, understanding the appropriate image meta-data fields and updating them properly. The programs themselves are completely multimission; all mission dependencies are handled by PIG.

Posted in: Physical Sciences, Software, Imaging, Briefs, TSP

Read More >>

Automatic Calibration of an Airborne Imaging System to an Inertial Navigation Unit

This software automatically calibrates a camera or an imaging array to an inertial navigation system (INS) that is rigidly mounted to the array or imager. In effect, it recovers the coordinate frame transformation between the reference frame of the imager and the reference frame of the INS.

Posted in: Physical Sciences, Software, Imaging, Briefs

Read More >>