Detection of Carried and Dropped Objects in Surveillance Video

This software analyzes a video input stream and automatically detects carried and dropped objects in near-real-time. NASA’s Jet Propulsion Laboratory, Pasadena, California DARPA’s Mind’s Eye Program aims to develop a smart camera surveillance system that can autonomously monitor a scene and report back human-readable text descriptions of activities that occur in the video. An important aspect is whether objects are brought into the scene, exchanged between persons, left behind, picked up, etc. While some objects can be detected with an object-specific recognizer, many others are not well suited for this type of approach. For example, a carried object may be too small relative to the resolution of the camera to be easily identifiable, or an unusual object, such as an improvised explosive device, may be too rare or unique in its appearance to have a dedicated recognizer. Hence, a generic object detection capability, which can locate objects without a specific model of what to look for, is used. This approach can detect objects even when partially occluded or overlapping with humans in the scene.

Posted in: Briefs, TSP, Cameras, Electronics & Computers, Data Acquisition, Detectors


Visualization of fMRI Network Data

NASA’s Jet Propulsion Laboratory, Pasadena, California Functional connections within the brain can be revealed through functional magnetic resonance imaging (fMRI), which shows simultaneous activations of blood flow in the brain during response tests. However, fMRI specialists currently do not have a tool for visualizing the complex data that comes from fMRI scans. They work with correlation matrices that table what functional region connections exist, but they have no corresponding visualization.

Posted in: Briefs, TSP, Visualization Software, Electronics & Computers, Data Acquisition


Algorithm for Estimating PRC Wavefront Errors from Shack-Hartmann Camera Images

Phase retrieval is used for the calibration and the fine-alignment of an optical system. NASA’s Jet Propulsion Laboratory, Pasadena, California Phase retrieval (PR) and Shack-Hartmann Sensor (SHS) are the two preferred methods of image-based wavefront sensing widely used in various optical testbeds, adaptive optical systems, and ground- and space-based telescopes. They are used to recover the phase information of an optical system from defocused point source images (PR) and focused point source or extended scene images (SHS). For example, the Terrestrial Planet Finder Coronagraph’s (TPF-C’s) High-Contrast Imaging Testbed (HCIT) uses a PR camera (PRC) to estimate, and subsequently correct, the phase error at the exit pupil of this optical system. Several other test-beds at JPL were, and will be, equipped with both a PRC and a Shack-Hartmann camera (SHC).

Posted in: Briefs, TSP, Cameras, Optics, Sensors


Head-Worn Display Concepts for Ground Operations for Commercial Aircraft

This display enables a higher level of safety during ground operations, including taxiway navigation and situational awareness. Langley Research Center, Hampton, Virginia The Integrated Intelligent Flight Deck (IIFD) project, part of NASA’s Aviation Safety Program (AvSP), comprises a multi-disciplinary research effort to develop flight deck technologies that mitigate operator-, automation-, and environment-induced hazards. Toward this objective, the IIFD project is developing crew/vehicle interface technologies that reduce the propensity for pilot error, minimize the risks associated with pilot error, and proactively overcome aircraft safety barriers that would otherwise constrain the next full realization of the Next Generation Air Transportation System (NextGen). Part of this research effort involves the use of synthetic and enhanced vision systems and advanced display media as enabling crew-vehicle interface technologies to meet these safety challenges.

Posted in: Articles, Briefs, TSP, Aviation, Displays/Monitors/HMIs


Imaging Space System Architectures Using a Granular Medium as a Primary Concentrator

Higher-resolution optics provide improved hyperspectral imaging for ocean and land monitoring, as well as exoplanet detection. NASA’s Jet Propulsion Laboratory, Pasadena, California Typically, the cost of a space observatory is driven by the size and mass of the primary aperture. Generally, a monolithic aperture is much heavier and complex to fabricate (hence, more costly) than an aperture of the same size but composed of much smaller units. Formation flying technology, as applied to swarm systems in space, is an emerging discipline.

Posted in: Imaging, Briefs, TSP


Support Routines for In Situ Image Processing

This software consists of a set of application programs that support ground-based image processing for in situ missions. These programs represent a collection of utility routines that perform miscellaneous functions in the context of the ground data system. Each one fulfills some specific need as determined via operational experience. The most unique aspect to these programs is that they are integrated into the large, in situ image processing system via the PIG (Planetary Image Geometry) library. They work directly with space in situ data, understanding the appropriate image meta-data fields and updating them properly. The programs themselves are completely multimission; all mission dependencies are handled by PIG.

Posted in: Imaging, Software, Briefs, TSP


Hands-Free Transcranial Color Doppler Probe

These probes enable full use of TCD technology for neurological diagnostics. Current transcranial color Doppler (TCD) transducer probes are bulky and difficult to move in tiny increments to search and optimize TCD signals. This invention provides miniature motions of a TCD transducer probe to optimize TCD signals.

Posted in: Bio-Medical, Briefs, TSP, Briefs, TSP, Patient Monitoring


Cell Radiation Experiment System

Cells can be irradiated under conditions that approximate those in living tissues.The cell radiation experiment system (CRES) is a perfused-cell culture apparatus, within which cells from humans or other animals can (1) be maintained in homeostasis while (2) being exposed to ionizing radiation during controlled intervals and (3) being monitored to determine the effects of radiation and the repair of radiation damage. The CRES can be used, for example, to determine effects of drug, radiation, and combined drug and radiation treatments on both normal and tumor cells. The CRES can also be used to analyze the effects of radiosensitive or radioprotectant drugs on cells subjected to radiation. The knowledge gained by use of the CRES is expected to contribute to the development of better cancer treatments and of better protection for astronauts, medical-equipment operators, and nuclear-power-plant workers, and others exposed frequently to ionizing radiation.

Posted in: Bio-Medical, Briefs, TSP, Briefs, TSP, Patient Monitoring


On-Demand Urine Analyzer

A lab-on-a-chip was developed that is capable of extracting biochemical indicators from urine samples and generating their surface-enhanced Raman spectra (SERS) so that the indicators can be quantified and identified. The development was motivated by the need to monitor and assess the effects of extended weightlessness, which include space motion sickness and loss of bone and muscle mass. The results may lead to developments of effective exercise programs and drug regimes that would maintain astronaut health.

Posted in: Bio-Medical, Briefs, TSP, Briefs, TSP, Patient Monitoring


Advanced Land Imager Assessment System

An integrated system provides radiometric and geometric calibration and validation data processing for a multispectral pushbroom instrument. Goddard Space Flight Center, Greenbelt, Maryland The Advanced Land Imager Assessment System (ALIAS) supports radiometric and geometric image processing for the Advanced Land Imager (ALI) instrument onboard NASA’s Earth Observing-1 (EO-1) satellite. ALIAS consists of two processing subsystems for radiometric and geometric processing of the ALI’s multispectral imagery. The radiometric processing subsystem characterizes and corrects, where possible, radiometric qualities including: coherent, impulse; and random noise; signal-to-noise ratios (SNRs); detector operability; gain; bias; saturation levels; striping and banding; and the stability of detector performance.

Posted in: Briefs, TSP


White Papers

Working With Mechanical Motion Subsystems
Sponsored by Bell Everman
UV-/Light-Curing Adhesives Improve Manufacturing Productivity
Sponsored by DELO
3D Printing in Space: The Next Frontier
Sponsored by Stratasys
Troubleshooting EMI in Embedded Designs
Sponsored by Rohde and Schwarz A and D
Eliminate Risk of Contention and Data Corruption in RS-485 Communications
Sponsored by Sealevel
3D Printing and the Future of Manufacturing
Sponsored by Stratasys

White Papers Sponsored By: