Imaging

Imaging Space System Architectures Using a Granular Medium as a Primary Concentrator

Higher-resolution optics provide improved hyperspectral imaging for ocean and land monitoring, as well as exoplanet detection. NASA’s Jet Propulsion Laboratory, Pasadena, California Typically, the cost of a space observatory is driven by the size and mass of the primary aperture. Generally, a monolithic aperture is much heavier and complex to fabricate (hence, more costly) than an aperture of the same size but composed of much smaller units. Formation flying technology, as applied to swarm systems in space, is an emerging discipline.

Posted in: Physical Sciences, Imaging, Briefs, TSP

Read More >>

Support Routines for In Situ Image Processing

This software consists of a set of application programs that support ground-based image processing for in situ missions. These programs represent a collection of utility routines that perform miscellaneous functions in the context of the ground data system. Each one fulfills some specific need as determined via operational experience. The most unique aspect to these programs is that they are integrated into the large, in situ image processing system via the PIG (Planetary Image Geometry) library. They work directly with space in situ data, understanding the appropriate image meta-data fields and updating them properly. The programs themselves are completely multimission; all mission dependencies are handled by PIG.

Posted in: Physical Sciences, Software, Imaging, Briefs, TSP

Read More >>

Hands-Free Transcranial Color Doppler Probe

These probes enable full use of TCD technology for neurological diagnostics. Current transcranial color Doppler (TCD) transducer probes are bulky and difficult to move in tiny increments to search and optimize TCD signals. This invention provides miniature motions of a TCD transducer probe to optimize TCD signals.

Posted in: Bio-Medical, Imaging, Medical, Patient Monitoring, Briefs, TSP, MDB

Read More >>

Cell Radiation Experiment System

Cells can be irradiated under conditions that approximate those in living tissues.The cell radiation experiment system (CRES) is a perfused-cell culture apparatus, within which cells from humans or other animals can (1) be maintained in homeostasis while (2) being exposed to ionizing radiation during controlled intervals and (3) being monitored to determine the effects of radiation and the repair of radiation damage. The CRES can be used, for example, to determine effects of drug, radiation, and combined drug and radiation treatments on both normal and tumor cells. The CRES can also be used to analyze the effects of radiosensitive or radioprotectant drugs on cells subjected to radiation. The knowledge gained by use of the CRES is expected to contribute to the development of better cancer treatments and of better protection for astronauts, medical-equipment operators, and nuclear-power-plant workers, and others exposed frequently to ionizing radiation.

Posted in: Bio-Medical, Imaging, Medical, Patient Monitoring, Briefs, TSP, MDB

Read More >>

On-Demand Urine Analyzer

A lab-on-a-chip was developed that is capable of extracting biochemical indicators from urine samples and generating their surface-enhanced Raman spectra (SERS) so that the indicators can be quantified and identified. The development was motivated by the need to monitor and assess the effects of extended weightlessness, which include space motion sickness and loss of bone and muscle mass. The results may lead to developments of effective exercise programs and drug regimes that would maintain astronaut health.

Posted in: Bio-Medical, Imaging, Medical, Patient Monitoring, Briefs, TSP, MDB

Read More >>

Advanced Land Imager Assessment System

An integrated system provides radiometric and geometric calibration and validation data processing for a multispectral pushbroom instrument. Goddard Space Flight Center, Greenbelt, Maryland The Advanced Land Imager Assessment System (ALIAS) supports radiometric and geometric image processing for the Advanced Land Imager (ALI) instrument onboard NASA’s Earth Observing-1 (EO-1) satellite. ALIAS consists of two processing subsystems for radiometric and geometric processing of the ALI’s multispectral imagery. The radiometric processing subsystem characterizes and corrects, where possible, radiometric qualities including: coherent, impulse; and random noise; signal-to-noise ratios (SNRs); detector operability; gain; bias; saturation levels; striping and banding; and the stability of detector performance.

Posted in: Physical Sciences, Imaging, Briefs, TSP

Read More >>

Mosaic-Detector-Based Fluorescence Spectral Imager

This portable instrument would perform comparably to larger laboratory instruments. NASA’s Jet Propulsion Laboratory, Pasadena, California A battery-powered, pen-sized, portable instrument for measuring molecular fluorescence spectra of chemical and biological samples in the field has been proposed. Molecular fluorescence spectroscopy is among the techniques used most frequently in laboratories to analyze compositions of chemical and biological samples. Heretofore, it has been possible to measure fluorescence spectra of molecular species at relative concentrations as low as parts per billion (ppb), with a few nm spectral resolution. The proposed instrument would include a planar array (mosaic) of detectors, onto which a fluorescence spectrum would be spatially mapped. Unlike in the larger laboratory-type molecular fluorescence spectrometers, mapping of wavelengths to spatial positions would be accomplished without use of relatively bulky optical parts. The proposed instrument is expected to be sensitive enough to enable measurement of spectra of chemical species at relative concentrations

Posted in: Photonics, Imaging, Briefs, TSP

Read More >>

Design and Fabrication of High-Efficiency CMOS/CCD Imagers

Economical production of back-illuminated CMOS/CCD imagers should soon become possible. NASA’s Jet Propulsion Laboratory, Pasadena, California An architecture for back-illuminated complementary metal oxide/semiconductor (CMOS) and charge-coupled-device (CCD) ultraviolet/visible/near infrared-light image sensors, and a method of fabrication to implement the architecture, are undergoing development. The architecture and method are expected to enable realization of the full potential of back-illuminated CMOS/CCD imagers to perform with high efficiency, high sensitivity, excellent angular response, and in-pixel signal processing. The architecture and method are compatible with next-generation CMOS dielectric-forming and metallization techniques, and the process flow of the method is compatible with process flows typical of the manufacture of very-large-scale integrated (VLSI) circuits.

Posted in: Photonics, Imaging, Briefs, TSP

Read More >>

Metrology Camera System Using Two-Color Interferometry

3D locations of multiple targets are determined without mechanical scanning. NASA’s Jet Propulsion Laboratory, Pasadena, California A metrology system that contains no moving parts simultaneously measures the bearings and ranges of multiple reflective targets in its vicinity, enabling determination of the three-dimensional (3D) positions of the targets with submillimeter accuracy. The system combines a direction-measuring metrology camera and an interferometric range-finding subsystem. Because the system is based partly on a prior instrument denoted the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor and because of its 3D capability, the system is denoted the MSTAR3D. Developed for use in measuring the shape (for the purpose of compensating for distortion) of large structures like radar antennas, it can also be used to measure positions of multiple targets in the course of conventional terrestrial surveying.

Posted in: Photonics, Imaging, Briefs, TSP

Read More >>

White Papers

White Paper: Computer System Design for Critical Applications
Sponsored by Sealevel
Magnetics Design: Specification, Performance & Economics
Sponsored by Datatronics
Bridging the Armament Test Gap
Sponsored by Marvin Test Solutions
High-Speed A/Ds for Real-Time Systems
Sponsored by Pentek
Medical Capabilities Brochure
Sponsored by Nordson EFD
Specialized Adhesives Withstand Thermal Cycling
Sponsored by Master Bond

White Papers Sponsored By: