Imaging

Technique Enables Imaging of Transparent Organisms

Researchers at the RIKEN Quantitative Biology Center in Japan and the University of Tokyo have developed a method that combines tissue decolorization and light-sheet fluorescent microscopy to take extremely detailed images of the interior of individual organs and even entire organisms. The work allows scientists to make tissues and whole organisms transparent, and then image them at extremely precise, single-cell resolution. The method, called CUBIC (Clear, Unobstructed Brain Imaging Cocktails and Computational Analysis), was used to take images of mouse brains, hearts, lungs, kidneys, and livers, and then was attempted on infant and adult mice. In all cases, they could get clear tissues. The method could be used to study how embryos develop or how cancer and autoimmune diseases develop at the cellular level, leading to a deeper understanding of such diseases and perhaps to new therapeutic strategies. The group plans to allow for the rapid imaging of whole bodies of adult mice or larger samples such as human brains, and to apply this technology to further our understanding of autoimmune and psychiatric diseases. Source:

Posted in: News

Read More >>

Ultrasound Creates 3D Haptic Shapes

Touch feedback, known as haptics, has been used in entertainment, rehabilitation, and even surgical training. University of Bristol researchers, using ultrasound, have developed an invisible 3D haptic shape that can be seen and felt.Led by Dr Ben Long and colleagues Professor Sriram Subramanian, Sue Ann Seah, and Tom Carter from the University of Bristol’s Department of Computer Science, the research could change the way 3D shapes are used.  The new technology could enable surgeons to explore a CT scan by enabling them to feel a disease, such as a tumor, using haptic feedback.By focusing complex patterns of ultrasound, the air disturbances can be seen as floating 3D shapes. Visually, the researchers have demonstrated the ultrasound patterns by directing the device at a thin layer of oil so that the depressions in the surface can be seen as spots when lit by a lamp.The system generates an invisible three-dimensional shape that can be added to 3D displays to create an image that can be seen and felt. The research team have also shown that users can match a picture of a 3D shape to the shape created by the system. SourceAlso: Learn about an Ophthalmic Ultrasound System for Ocular Structures.

Posted in: News

Read More >>

Imaging Technique Could Detect Acoustically “Invisible” Cracks

It has long been understood that acoustic nonlinearity is sensitive to many physical properties including material microstructure and mechanical damage. The lack of effective imaging has, however, held back the use of this important method. Currently, engineers are able to produce images of the interior of components using ultrasound, but can only detect large problems such as cracks.

Posted in: News

Read More >>

Thermal Imaging’s Pocket-Sized Potential

Let’s say you’re a prospective buyer touring an older home that you suspect has some weatherization issues. What if you could verify your hunch by literally seeing cold air seeping under doors or cooling walls where insulation is missing? And what if you could do this on the spot using a smartphone?

Posted in: Articles

Read More >>

Camera Considerations When Inspecting Printed Circuit Boards

PCB manufacturing is a very competitive market, and manufacturers must be able to confidently ship accurate printed circuit board (PCB) products. Delivery of incorrect boards may have a significant, negative impact on the company reputation, which can directly result in lost business. Inspection of the boards before shipment is required.

Posted in: Articles, Cameras

Read More >>

Infrared ‘Optical Biopsy’ Reveals Tumors and Lesions

A new medical imaging method being developed at Rutgers University could help physicians detect cancer and other diseases earlier than before, speeding treatment and reducing the need for invasive, time-consuming biopsies.

Posted in: Application Briefs

Read More >>

Imaging System Helps View Elusive Veins

The Australian Red Cross Blood Service is researching the use of imaging technology to visualize blood donors’ veins. The vein visualization devices are portable, and project an image of the veins onto the skin’s surface using non-invasive, near-infrared technology. The Blood Service is aiming to find out if this procedure reduces anxiety, improves donation comfort, and makes donors more likely to donate again.

Posted in: UpFront, Visualization Software

Read More >>

NASA's Hot 100 Technologies: Instrumentation

Powder Handling Device for Analytical Instruments This technology provides automated sample handling and movement of coarse-grained powder or other solid materials to enable analysis by a robotic or totally automated computer system. The powder is handled as a fluid, using mechanical vibrations in conjunction with a driving force, and requiring few or no moving parts.

Posted in: Articles, Techs for License, Sensors

Read More >>

NASA's Hot 100 Technologies: Optics

Automated Vision Test The traditional test for visual acuity requires the patient to look and report which letters they see. A new invention provides an automated system to estimate visual acuity based on objective measurements of the eye optics and wavefront aberrations. A typical measurement consists of a list of numbers that constitute the coefficients of the polynomials. The algorithm converts the list of numbers into an estimate of the visual acuity of the patient.

Posted in: Articles, Techs for License, Machine Vision

Read More >>

Researchers Measure Stress in 3D-Printed Metal Parts

Lawrence Livermore National Laboratory researchers have developed an efficient method to measure residual stress in metal parts produced by powder-bed fusion additive manufacturing (AM).The 3D-printing process produces metal parts layer by layer using a high-energy laser beam to fuse metal powder particles. When each layer is complete, the build platform moves downward by the thickness of one layer, and a new powder layer is spread on the previous layer.While the method produces quality parts and components, residual stress is a major problem during the fabrication process. Large temperature changes near the last melt spot, and the repetition of this process, result in localized expansion and contraction.An LLNL research team, led by engineer Amanda Wu, has developed an accurate residual stress measurement method that combines traditional stress-relieving methods (destructive analysis) with modern technology: digital image correlation (DIC). The process provides fast and accurate measurements of surface-level residual stresses in AM parts.The team used DIC to produce a set of quantified residual stress data for AM, exploring laser parameters. DIC is a cost-effective, image analysis method in which a dual camera setup is used to photograph an AM part once before it’s removed from the build plate for analysis and once after. The part is imaged, removed, and then re-imaged to measure the external residual stress.SourceAlso: Learn about Design and Analysis of Metal-to-Composite Nozzle Extension Joints.

Posted in: News, Cameras, Rapid Prototyping & Tooling, Metals, Lasers & Laser Systems, Photonics, Measuring Instruments

Read More >>

White Papers

Powering Wearable Technology and the Internet of Everything
Sponsored by Cymbet
Determination of Capacitor Life as a Function of Operating Voltage and Temperature
Sponsored by Evans Capacitor
Looking at Ceramic Carbides in a New Light
Sponsored by Goodfellow
Metal Injection Molding Turns the Volume Up, and Down
Sponsored by Proto Labs
Oscilloscope Fundamentals
Sponsored by Rohde and Schwarz A and D
A Brief History of Modern Digital Shaker Controllers
Sponsored by Crystal Instruments

White Papers Sponsored By: