Imaging

Ultrasound Creates 3D Haptic Shapes

Touch feedback, known as haptics, has been used in entertainment, rehabilitation, and even surgical training. University of Bristol researchers, using ultrasound, have developed an invisible 3D haptic shape that can be seen and felt.Led by Dr Ben Long and colleagues Professor Sriram Subramanian, Sue Ann Seah, and Tom Carter from the University of Bristol’s Department of Computer Science, the research could change the way 3D shapes are used.  The new technology could enable surgeons to explore a CT scan by enabling them to feel a disease, such as a tumor, using haptic feedback.By focusing complex patterns of ultrasound, the air disturbances can be seen as floating 3D shapes. Visually, the researchers have demonstrated the ultrasound patterns by directing the device at a thin layer of oil so that the depressions in the surface can be seen as spots when lit by a lamp.The system generates an invisible three-dimensional shape that can be added to 3D displays to create an image that can be seen and felt. The research team have also shown that users can match a picture of a 3D shape to the shape created by the system. SourceAlso: Learn about an Ophthalmic Ultrasound System for Ocular Structures.

Posted in: News

Read More >>

Imaging Technique Could Detect Acoustically “Invisible” Cracks

It has long been understood that acoustic nonlinearity is sensitive to many physical properties including material microstructure and mechanical damage. The lack of effective imaging has, however, held back the use of this important method. Currently, engineers are able to produce images of the interior of components using ultrasound, but can only detect large problems such as cracks.

Posted in: News

Read More >>

Thermal Imaging’s Pocket-Sized Potential

Let’s say you’re a prospective buyer touring an older home that you suspect has some weatherization issues. What if you could verify your hunch by literally seeing cold air seeping under doors or cooling walls where insulation is missing? And what if you could do this on the spot using a smartphone?

Posted in: Articles

Read More >>

Camera Considerations When Inspecting Printed Circuit Boards

PCB manufacturing is a very competitive market, and manufacturers must be able to confidently ship accurate printed circuit board (PCB) products. Delivery of incorrect boards may have a significant, negative impact on the company reputation, which can directly result in lost business. Inspection of the boards before shipment is required.

Posted in: Articles, Cameras

Read More >>

Infrared ‘Optical Biopsy’ Reveals Tumors and Lesions

A new medical imaging method being developed at Rutgers University could help physicians detect cancer and other diseases earlier than before, speeding treatment and reducing the need for invasive, time-consuming biopsies.

Posted in: Application Briefs

Read More >>

Imaging System Helps View Elusive Veins

The Australian Red Cross Blood Service is researching the use of imaging technology to visualize blood donors’ veins. The vein visualization devices are portable, and project an image of the veins onto the skin’s surface using non-invasive, near-infrared technology. The Blood Service is aiming to find out if this procedure reduces anxiety, improves donation comfort, and makes donors more likely to donate again.

Posted in: UpFront, Visualization Software

Read More >>

NASA's Hot 100 Technologies: Instrumentation

Powder Handling Device for Analytical Instruments This technology provides automated sample handling and movement of coarse-grained powder or other solid materials to enable analysis by a robotic or totally automated computer system. The powder is handled as a fluid, using mechanical vibrations in conjunction with a driving force, and requiring few or no moving parts.

Posted in: Articles, Techs for License, Sensors

Read More >>

NASA's Hot 100 Technologies: Optics

Automated Vision Test The traditional test for visual acuity requires the patient to look and report which letters they see. A new invention provides an automated system to estimate visual acuity based on objective measurements of the eye optics and wavefront aberrations. A typical measurement consists of a list of numbers that constitute the coefficients of the polynomials. The algorithm converts the list of numbers into an estimate of the visual acuity of the patient.

Posted in: Articles, Techs for License, Machine Vision

Read More >>

Researchers Measure Stress in 3D-Printed Metal Parts

Lawrence Livermore National Laboratory researchers have developed an efficient method to measure residual stress in metal parts produced by powder-bed fusion additive manufacturing (AM).The 3D-printing process produces metal parts layer by layer using a high-energy laser beam to fuse metal powder particles. When each layer is complete, the build platform moves downward by the thickness of one layer, and a new powder layer is spread on the previous layer.While the method produces quality parts and components, residual stress is a major problem during the fabrication process. Large temperature changes near the last melt spot, and the repetition of this process, result in localized expansion and contraction.An LLNL research team, led by engineer Amanda Wu, has developed an accurate residual stress measurement method that combines traditional stress-relieving methods (destructive analysis) with modern technology: digital image correlation (DIC). The process provides fast and accurate measurements of surface-level residual stresses in AM parts.The team used DIC to produce a set of quantified residual stress data for AM, exploring laser parameters. DIC is a cost-effective, image analysis method in which a dual camera setup is used to photograph an AM part once before it’s removed from the build plate for analysis and once after. The part is imaged, removed, and then re-imaged to measure the external residual stress.SourceAlso: Learn about Design and Analysis of Metal-to-Composite Nozzle Extension Joints.

Posted in: News, Cameras, Rapid Prototyping & Tooling, Metals, Lasers & Laser Systems, Photonics, Measuring Instruments

Read More >>

Moving Cameras Track Objects Automatically

University of Washington electrical engineers have developed a way to automatically track people across moving and still cameras by using an algorithm that trains the networked cameras to learn one another’s differences. The cameras first identify a person in a video frame, then follow that same person across multiple camera views.“Tracking humans automatically across cameras in a three-dimensional space is new,” said lead researcher Jenq-Neng Hwang, a UW professor of electrical engineering. “As the cameras talk to each other, we are able to describe the real world in a more dynamic sense.”Imagine a typical GPS display that maps the streets, buildings and signs in a neighborhood as your car moves forward, then add humans to the picture. With the new technology, a car with a mounted camera could take video of the scene, then identify and track humans and overlay them into the virtual 3-D map on your GPS screen. The UW researchers are developing this to work in real time, which could help pick out people crossing in busy intersections, or track a specific person who is dodging the police.“Our idea is to enable the dynamic visualization of the realistic situation of humans walking on the road and sidewalks, so eventually people can see the animated version of the real-time dynamics of city streets on a platform like Google Earth,” Hwang said.SourceAlso: Learn about Machine Vision for High-Precision Volume Measurement.

Posted in: News, Cameras, Video, Visualization Software

Read More >>