Imaging

Two- and Three-Dimensional Near-Infrared Subcutaneous Structure Imager Using Adaptive Nonlinear Video Processing

The battery-powered system uses off-the-shelf near-infrared technology that is not affected by melanin content, and can also operate in dark environments. John H. Glenn Research Center, Cleveland, Ohio Scientists at NASA’s Glenn Research Center have successfully developed a novel subcutaneous structure imager for locating veins in challenging patient populations, such as juvenile, elderly, dark-skinned, or obese patients. Spurred initially by the needs of pediatric sickle-cell anemia patients in Africa, Glenn’s groundbreaking system includes a camera-processor-display apparatus and uses an innovative image-processing method to provide two- or three-dimensional, high-contrast visualization of veins or other vasculature structures. In addition to assisting practitioners to find veins in challenging populations, this system can also help novice healthcare workers locate veins for procedures such as needle insertion or excision. Compared to other state-of-the-art solutions, the imager is inexpensive, compact, and very portable, so it can be used in remote third-world areas, emergency response situations, or military battlefields.

Posted in: Briefs, Imaging, Imaging and visualization, Cardiovascular system, Medical equipment and supplies

Read More >>

Methods of Real-Time Image Enhancement of Flash LIDAR Data and Navigating a Vehicle Using Flash LIDAR Data

Applications include robotic ground vehicle collision avoidance, topographical/terrain mapping, and automotive adaptive cruise control. Langley Research Center, Hampton, Virginia The original (left) and enhanced resolution Flash LIDAR images. NASA’s Langley Research Center has developed 3D imaging technologies (Flash LIDAR) for real-time terrain mapping and synthetic vision-based navigation. To take advantage of the information inherent in a sequence of 3D images acquired at video rates, NASA Langley has also developed an embedded image-processing algorithm that can simultaneously correct, enhance, and derive relative motion by processing this image sequence into a high-resolution 3D synthetic image. Traditional scanning LIDAR techniques generate an image frame by raster scanning an image one laser pulse per pixel at a time, whereas Flash LIDAR acquires an image much like an ordinary camera, generating an image using a single laser pulse. The benefits of the Flash LIDAR technique and the corresponding image-to-image processing enable autonomous vision-based guidance and control for robotic systems. The current algorithm offers up to eight times image resolution enhancement, as well as a 6-degree-of-freedom state vector of motion in the image frame.

Posted in: Briefs, Imaging, Mathematical models, Imaging and visualization, Lidar, Navigation and guidance systems, Robotics

Read More >>

Spatially Aberrated Spectral Filtering for High-Performance Spectral Imaging

This innovation has application in the biomedical research, semiconductor, and analysis/characterization fields. NASA’s Jet Propulsion Laboratory, Pasadena, California High-performance thermal imagers like Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the Diviner Lunar Radiometer Experiment on the Lunar Reconnaissance Orbiter (LRO) currently use a three-mirror anastigmat (TMA) optical design to image remote targets. A TMA telescope is built with three curved mirrors, enabling it to minimize all three main optical aberrations: spherical aberration, coma, and astigmatism. This is primarily used to enable wide fields of view, much larger than possible with telescopes with just one or two curved surfaces.

Posted in: Briefs, Imaging, Mirrors, Imaging and visualization, Spacecraft

Read More >>

A Common-Mode Digital Holographic Microscope

This instrument has no moving parts and allows scientists to image in 3D and in real time. NASA’s Jet Propulsion Laboratory, Pasadena, California Digital holography is a fast-growing field in optics, recently spurred by the advent of large-format digital cameras and high-speed computers. This method provides a time-series of volumetric information about a sample, but the instrument itself has no moving parts. It does not compromise performance such as image quality and spatial resolution. However, these systems are typically implemented as optical interferometers with two separate beam paths: one is the reference beam and the other is the science beam. Interferometers are sensitive instruments that are subject to misalignment, and they will have significantly reduced performance in the presence of mechanical vibrations.

Posted in: Briefs, Imaging, Microscopy

Read More >>

Introduction to Machine Vision

A guide to automating process & quality improvements Get the basics of how machine vision technology works and why it's the right choice for automating process and quality improvements. The Introduction to Machine Vision whitepaper is the first step to understanding, what is machine vision, what kind of problems does it solve, what components do you need to build a vision system, how to get the most out of your vision system, and more. Read this whitepaper to see why automated inspection is vastly superior to manual techniques.

Posted in: White Papers, Machine Vision, Machinery & Automation

Read More >>

Boosting Machine Vision with Built-in FPGA Image Preprocessing

Since imaging processing tasks can consume major CPU resources in machine vision applications, increasing processing performance within size constraints is, accordingly, a common challenge for solution providers. The following discusses the efficacy of FPGA in addressing such performance shortcomings, presents the image processing tasks most suitable for FPGA, and compares the capabilities of CPU and FPGA in operation. A built -in FPGA image preprocessing solution supporting machine vision app lications is then presented.

Posted in: White Papers, Imaging, Optics, Photonics, Machinery & Automation, Robotics

Read More >>

NASA’s Infrared Sensor Spots Near-Earth Asteroids

The Near-Earth Object Camera (NEOCam) is part of a proposed NASA mission to find potentially hazardous asteroids. In a Q&A with Photonics & Imaging Technology, NEOCam principal investigator Amy Mainzer ex plains how the NEOCam chip, a stamp-sized mega pixel infrared sensor, detects the faint heat emitted by near-Earth objects circling the Sun.

Posted in: Articles, Features, Imaging, Photonics, Imaging and visualization, Sensors and actuators, Spacecraft

Read More >>

Advanced Digital Microscopes Providing Simple Solutions to Common Microscopy Issues

Thanks to a combination of high-quality optics and advanced digital imaging technology, today’s newest digital microscopes provide efficient solutions to a variety of common microscope challenges faced by users of conventional optical and digital microscopes. The following represent 10 conventional microscope issues and 10 solutions made possible with current digital microscope technology.

Posted in: Articles, Features, Imaging, Photonics, Microscopy

Read More >>

New Algorithm Reveals Underground Water Levels

Researchers from Stanford University have used satellite data and a new computer algorithm to gauge groundwater levels in Colorado’s San Luis Valley agricultural basin. The technique "fills in" underground water levels in areas where quality data had been previously unavailable.

Posted in: News, Imaging, Visualization Software, Antennas, RF & Microwave Electronics

Read More >>

Compact, Lightweight, Athermal, Nanocomposite Telescopes with Freeform Optics

Marshall Space Flight Center, Alabama Small space missions such as CubeSats frequently require telescopes with highly sophisticated optical systems that are also low in mass and cost. The very limited spacecraft volume and mass limits also preclude adjustments to maintain critical alignment with change in temperature. Existing systems, especially those that employ folded optical paths with freeform optics, are expensive to fabricate. The optics, and support and metering structures, are also heavy due to the use of high-density material such as glass, aluminum, or nickel.

Posted in: Briefs, Tech Briefs, Imaging, Photonics, Optics, Composite materials, Nanomaterials, Satellites

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.