Information Science

Surface Navigation Using Optimized Waypoints and Particle Swarm Optimization

This technique could be used in search and rescue, tracking, military scouting, navigation, and as a field resource support tool. The design priority for manned space exploration missions is almost always placed on human safety. Proposed manned surface exploration tasks (lunar, asteroid sample returns, Mars) have the possibility of astronauts traveling several kilometers away from a home base. Deviations from pre-planned paths are expected while exploring. In a time-critical emergency situation, there is a need to develop an optimal home base return path. The return path may or may not be similar to the outbound path, and what defines optimal may change with, and even within, each mission.

Posted in: Information Sciences, Briefs

Read More >>

Smart-Divert Powered Descent Guidance to Avoid the Backshell Landing Dispersion Ellipse

The software and methods are valid for planetary or lunar powered descent. A smart-divert capability has been added into the Powered Descent Guidance (PDG) software originally developed for Mars pinpoint and precision landing. The smart-divert algorithm accounts for the landing dispersions of the entry backshell, which separates from the lander vehicle at the end of the parachute descent phase and prior to powered descent. The smart-divert PDG algorithm utilizes the onboard fuel and vehicle thrust vectoring to mitigate landing error in an intelligent way: ensuring that the lander touches down with minimum- fuel usage at the minimum distance from the desired landing location that also avoids impact by the descending backshell.

Posted in: Information Sciences, Briefs

Read More >>

Adaptive Sampling of Spatiotemporal Phenomena With Optimization Criteria

This work was designed to find a way to optimally (or near optimally) sample spatiotemporal phenomena based on limited sensing capability, and to create a model that can be run to estimate uncertainties, as well as to estimate covariances. The goal was to maximize (or minimize) some function of the overall uncertainty.

Posted in: Information Sciences, Briefs

Read More >>

Estimating Foreign-Object- Debris Density From Photogrammetry Data

Within the first few seconds after launch of STS-124, debris traveling vertically near the vehicle was captured on two 16-mm film cameras surrounding the launch pad. One particular piece of debris caught the attention of engineers investigating the release of the flame trench fire bricks. The question to be answered was if the debris was a fire brick, and if it represented the first bricks that were ejected from the flame trench wall, or was the object one of the pieces of debris normally ejected from the vehicle during launch. If it was typical launch debris, such as SRB throat plug foam, why was it traveling vertically and parallel to the vehicle during launch, instead of following its normal trajectory, flying horizontally toward the north perimeter fence?

Posted in: Information Sciences, Briefs

Read More >>

Building a 2.5D Digital Elevation Model From 2D Imagery

High-quality DEMs are generated from a collection of 2D images. When projecting imagery into a georeferenced coordinate frame, one needs to have some model of the geographical region that is being projected to. This model can sometimes be a simple geometrical curve, such as an ellipse or even a plane. However, to obtain accurate projections, one needs to have a more sophisticated model that encodes the undulations in the terrain including things like mountains, valleys, and even manmade structures. The product that is often used for this purpose is a Digital Elevation Model (DEM).

Posted in: Information Sciences, Briefs

Read More >>

On a Formal Tool for Reasoning About Flight Software Cost Analysis

A report focuses on the development of flight software (FSW) cost estimates for 16 Discovery-class missions at JPL. The techniques and procedures developed enabled streamlining of the FSW analysis process, and provided instantaneous confirmation that the data and processes used for these estimates were consistent across all missions. The research provides direction as to how to build a prototype rulebased system for FSW cost estimation that would provide (1) FSW cost estimates, (2) explanation of how the estimates were arrived at, (3) mapping of costs, (4) mathematical trend charts with explanations of why the trends are what they are, (5) tables with ancillary FSW data of interest to analysts, (6) a facility for expert modification/ enhancement of the rules, and (7) a basis for conceptually convenient expansion into more complex, useful, and general rule-based systems.

Posted in: Information Sciences, Briefs

Read More >>

Display Provides Pilots with Real-Time Sonic-Boom Information

The impact of sonic booms can be controlled over populated areas. Supersonic aircraft generate shock waves that move outward and extend to the ground. As a cone of pressurized air spreads across the landscape along the flight path, it creates a continuous sonic boom along the flight track. Several factors can influence sonic booms: weight, size, and shape of the aircraft; its altitude and flight path; and weather and atmospheric conditions. This technology allows pilots to control the impact of sonic booms.

Posted in: Information Sciences, Briefs

Read More >>