Information Science

Two Mathematical Models of Nonlinear Vibrations

Model parameters are fit to empirical vibration data. Two innovative mathematical models of nonlinear vibrations, and methods of applying them, have been conceived as byproducts of an effort to develop a Kalman filter for highly precise estimation of bending motions of a large truss structure deployed in outer space from a space-shuttle payload bay. These models are also applicable to modeling and analysis of vibrations in other engineering disciplines, on Earth as well as in outer space.

Posted in: Information Sciences, Briefs

Read More >>

Spatial Coverage Planning for Exploration Robots

A report discusses an algorithm for an onboard planning and execution technology to support the exploration and characterization of geological features by autonomous rovers. A rover that is capable of deciding which observations are more important relieves the engineering team from much of the burden of attempting to make accurate predictions of what the available rover resources will be in the future. Instead, the science and engineering teams can uplink a set of observation requests that may potentially oversubscribe resources and let the rover use observation priorities and its current assessment of available resources to make decisions about which observations to perform and when to perform them.

Posted in: Information Sciences, Briefs

Read More >>

Estimating the Inertia Matrix of a Spacecraft

A paper presents a method of utilizing some flight data, aboard a spacecraft that includes reaction wheels for attitude control, to estimate the inertia matrix of the spacecraft. The required data are digitized samples of (1) the spacecraft attitude in an inertial reference frame as measured, for example, by use of a star tracker and (2) speeds of rotation of the reaction wheels, the moments of inertia of which are deemed to be known.

Posted in: Information Sciences, Briefs

Read More >>

Analysis of Performance of Stereoscopic Vision Software

A team of JPL researchers has analyzed stereoscopic vision software and produced a document describing its performance. This software is of the type used in maneuvering exploratory robotic vehicles on Martian terrain. The software in question utilizes correlations between portions of the images recorded by two electronic cameras to compute stereoscopic disparities, which, in conjunction with camera models, are used in computing distances to terrain points to be included in constructing a threedimensional model of the terrain. The analysis included effects of correlation-window size, a pyramidal image down-sampling scheme, vertical misalignment, focus, maximum disparity, stereo baseline, and range ripples. Contributions of sub-pixel interpolation, vertical misalignment, and foreshortening to stereo correlation error were examined theoretically and experimentally. It was found that camera-calibration inaccuracy contributes to both down-range and cross-range error but stereo correlation error affects only the down-range error. Experimental data for quantifying the stereo disparity error were obtained by use of reflective metrological targets taped to corners of bricks placed at known positions relative to the cameras. For the particular 1,024-by-768- pixel cameras of the system analyzed, the standard deviation of the down-range disparity error was found to be 0.32 pixel. This work was done by Won Kim, Adnan Ansar, Robert Steele, and Robert Steinke of Caltech for NASA’s Jet Propulsion Laboratory. For further information, contact iaoffice@jpl.nasa.gov.

Posted in: Information Sciences, Briefs

Read More >>

Simpler Adaptive Selection of Golomb Power-of-Two Codes

The selected code-parameter value is within 1 of the optimum value. An alternative method of adaptive selection of Golomb power-of-two (GPO2) codes has been devised for use in efficient, lossless encoding of sequences of non-negative integers from discrete sources. The method is intended especially for use in compression of digital image data. This method is somewhat suboptimal, but offers the advantage in that it involves significantly less computation than does a prior method of adaptive selection of optimum codes through “brute force” application of all code options to every block of samples.

Posted in: Information Sciences, Briefs

Read More >>

Error Rates and Channel Capacities in Multipulse PPM

It is now possible to compare expected performances of candidate modulation schemes. A method of computing channel capacities and error rates in multipulse pulse-position modulation (multipulse PPM) has been developed. The method makes it possible, when designing an optical PPM communication system, to determine whether and under what conditions a given multipulse PPM scheme would be more or less advantageous, relative to other candidate modulation schemes.

Posted in: Information Sciences, Briefs

Read More >>

Opto-Electronic Oscillator Using Suppressed Phase Modulation

Phase noise would be much lower than in prior OEOs. A proposed opto- electronic oscillator (OEO) would generate a microwave signal having degrees of frequency stability and spectral purity greater than those achieved in prior OEOs. The design of this system provides for reduction of noise levels (including the level of phase noise in the final output microwave signal) to below some of the fundamental limits of the prior OEOs while retaining the advantages of photonic generation of microwaves. Whereas prior OEOs utilize optical amplitude modulation, this system would utilize a combination of optical phase modulation and suppression thereof. The design promises to afford, in the opto-electronic domain, the low-noise advantages of suppression of carrier signals in all-electronic microwave oscillators.

Posted in: Information Sciences, Briefs

Read More >>