Information Science

Frequency-Modulated, Continuous-Wave Laser Ranging Using Photon-Counting Detectors

Optical ranging is a problem of estimating the round-trip flight time of a phase- or amplitude-modulated optical beam that reflects off of a target. Frequency-modulated, continuous-wave (FMCW) ranging systems obtain this estimate by performing an interferometric measurement between a local frequency- modulated laser beam and a delayed copy returning from the target. The range estimate is formed by mixing the target-return field with the local reference field on a beamsplitter and detecting the resultant beat modulation. In conventional FMCW ranging, the source modulation is linear in instantaneous frequency, the reference-arm field has many more photons than the target-return field, and the time-of-flight estimate is generated by balanced difference- detection of the beamsplitter output, followed by a frequency-domain peak search.

Posted in: Electronics & Computers, Briefs

Read More >>

Robust, Optimal Subsonic Airfoil Shapes

A method has been developed to create an airfoil robust enough to operate satisfactorily in different environments. This method determines a robust, optimal, subsonic airfoil shape, beginning with an arbitrary initial airfoil shape, and imposes the necessary constraints on the design. Also, this method is flexible and extendible to a larger class of requirements and changes in constraints imposed.

Posted in: Information Sciences, Electronics & Computers, Briefs

Read More >>

Temperature Dependences of Mechanisms Responsible for the Water-Vapor Continuum Absorption

Results can be used to develop better empirical models. The water-vapor continuum absorption plays an important role in the radiative balance in the Earth’s atmosphere. It has been experimentally shown that for ambient atmospheric conditions, the continuum absorption scales quadratically with the H2O number density and has a strong, negative temperature dependence (T dependence). Over the years, there have been three different theoretical mechanisms postulated: far-wings of allowed transition lines, water dimers, and collision-induced absorption. The first mechanism proposed was the accumulation of absorptions from the farwings of the strong allowed transition lines. Later, absorption by water dimers was proposed, and this mechanism provides a qualitative explanation for the continuum characters mentioned above. Despite the improvements in experimental data, at present there is no consensus on which mechanism is primarily responsible for the continuum absorption.

Posted in: Electronics & Computers, Briefs

Read More >>

Kalman Filter Input Processor for Boresight Calibration

The new software brings this technology to the industrial level. Ka-band ranging provides the phase center (PC) to phase center range, which needs to be converted to the center of mass (CM) to center of mass range. Nominally, both PC and CM lie on the line connecting the spacecraft GRAIL A and GRAIL B. In this case, the conversion should be done simply by adding the CM-to-PC distance L to the measured range for both spacecraft. However, due to various technical reasons, such as displacement of the true CM from its nominal position in the SRF, or spacecraft attitude fluctuations, the PC and CM define a unit vector that may be different from the nominal line of sight. The objectives of the software are to determine the actual line of sight direction for each spacecraft and correct the previously recorded range data, and to provide instructions for how to maneuver each spacecraft to make necessary attitude corrections.

Posted in: Electronics & Computers, Briefs

Read More >>

Organizing Compression of Hyperspectral Imagery to Allow Efficient Parallel Decompression

Higher compression factors can be attained. A family of schemes has been devised for organizing the output of an algorithm for predictive data compression of hyperspectral imagery so as to allow efficient parallelization in both the compressor and decompressor. In these schemes, the compressor performs a number of iterations, during each of which a portion of the data is compressed via parallel threads operating on independent portions of the data. The general idea is that for each iteration it is predetermined how much compressed data will be produced from each thread.

Posted in: Electronics & Computers, Briefs

Read More >>

Protograph-Based Raptor-Like Codes

The proposed codes have the advantage of low-complexity encoder and decoder implementation. Theoretical analysis has long indicated that feedback improves the error exponent but not the capacity of point-to-point memoryless channels. The analytic and empirical results indicate that at short blocklength regime, practical rate-compatible punctured convolutional (RCPC) codes achieve low latency with the use of noiseless feedback. In 3GPP, standard rate-compatible turbo codes (RCPT) did not outperform the convolutional codes in the short blocklength regime. The reason is the convolutional codes for low number of states can be decoded optimally using Viterbi decoder. Despite excellent performance of convolutional codes at very short blocklengths, the strength of convolutional codes does not scale with the blocklength for a fixed number of states in its trellis.

Posted in: Electronics & Computers, Briefs

Read More >>

Data Quality Screening Service

A report describes the Data Quality Screening Service (DQSS), which is designed to help automate the filtering of remote sensing data on behalf of science users. Whereas this process often involves much research through quality documents followed by laborious coding, the DQSS is a Web Service that provides data users with data pre-filtered to their particular criteria, while at the same time guiding the user with filtering recommendations of the cognizant data experts.

Posted in: Electronics & Computers, Briefs

Read More >>