Information Technology & Software

Python Interface to T-Matrix Scattering Computations (PyTMatrix)

PyTMatrix is a Python interface to a T-matrix numerical scattering computation code originally developed at NASA GISS (Goddard Institute for Space Studies). It integrates into the NumPy/SciPy scientific framework. The software provides streamlined access to numerical T-matrix computations directly from the Python programming language. It retains the original numerical core written in Fortran 77, thus combining the flexibility of Python and the numerical performance of Fortran. It also provides tools for post-processing the output by integrating over various particle size and orientation distributions.

Posted in: Briefs, Electronics & Computers, Information Sciences, Software, Mathematical analysis, Computer software and hardware, Particulate matter (PM)

Learning the "Keys" of IoT Security

Network-connected devices provide many opportunities to improve and enrich people’s lives, but the “Internet of Things” has a range of definitions. A consumer’s experience with the “IoT” may be a wearable computer for fitness tracking. A physician may place a connected heartbeat monitor on a patient. An industrial engineer may see the Internet of Things as thousands of sensor points that provide measurements of temperatures, pressures, or valve states.

Posted in: Articles, Briefs, Electronics & Computers, Sensors, Cyber security, Internet of things

Tailor-made Computing Solutions Require Diverse I/O Functions

More than ever, users from industry and transportation expect the full system solution, but no longer want to have to worry about the cumbersome configuration and integration of individual hardware components and adapting the software. There is a very simple reason for this: the system supplier of their choice reduces the time to market and is also responsible for the entire system at the same time.

Posted in: White Papers, Communications, Electronics, Electronics & Computers, Electronics & Computers, Software

What's the Right 3D Printing Technology - FDM or Polyjet?

Fused deposition modeling (FDM®) and PolyJet® are two of the most advanced and effective additive manufacturing (AM) or 3D printing technologies available. They span the range from budget-friendly, desktop modeling devices to large-format, factory-floor equipment that draw from the capital expenditure budget, and can produce a range of output from precise, finely detailed models to durable production goods. While there is crossover in applications and advantages, these two technology platforms remain distinct and bring different benefits. Understanding the differences is the baseline for selecting the right technology for your application, demands and constraints.

Posted in: White Papers, Electronics & Computers, Manufacturing & Prototyping, Electronics & Computers, Software

System and Method for Transferring Telemetry Data Between a Ground Station and a Control Center

Goddard Space Flight Center, Greenbelt, Maryland

The Lunar Reconnaissance Orbiter (LRO) employs many advanced innovations developed at NASA’s Goddard Space Flight Center and in collaboration with other organizations. The applications and benefits for these technologies are advantageous for many other industries as well. One of those technologies is the Space Link Extension Return Channel Frames (SLE-RCF) software library. This software library enables a mission control center to receive telemetry frames from a ground station. The technology implements the SLE-RCF protocol as defined by the Consultative Committee for Space Data Systems (CCSDS). Software routines can be reused from mission to mission.

Posted in: Briefs, Electronics & Computers, Electronics & Computers, Software, Communication protocols, Data exchange, Satellite communications, Telemetry

Method and Apparatus for Generating Flight-Optimizing Trajectories

Flight path and altitude modifications are pre-cleared of potential conflicts with other known airplane traffic, weather hazards, and airspace restrictions.

Langley Research Center, Hampton, Virginia

NASA’s Langley Research Center is developing Traffic Aware Strategic Aircrew Requests (TASAR). TASAR features a cockpit automation system that monitors for potential flight trajectory improvements and displays them to the pilot. These wind-optimized flight trajectory changes are pre-cleared of potential conflicts with other known airplane traffic, weather hazards, and airspace restrictions. The TASAR is to improve the process in which pilots request flight path and altitude modifications due to changing flight conditions. Changes may be made to reduce flight time, increase fuel efficiency, or improve some other flight attribute desired by the operator. Currently, pilots make such requests to air traffic control (ATC) with limited awareness of what is happening around them. Consequently, some of these requests will be denied resulting in no flight improvements and an unnecessary workload increase for both pilots and ATC. The TASAR technology provides pilots with recommended flight path and altitude improvements that are more likely to be approved by ATC.

Posted in: Briefs, Electronics & Computers, Software, Trajectory control, Displays, Air traffic control

Systems, Methods, and Apparatus for Developing and Maintaining Evolving Systems with Software Product Lines

Goddard Space Flight Center, Greenbelt, Maryland

Physical manufacturers have been taking advantage of mass manufacturing ideas for a long time, increasing their productivity, cutting their costs, and ensuring the quality and uniformity of their products. Now, this idea is being applied to software production so the same benefits can be reaped in that field.

Posted in: Briefs, Electronics & Computers, Software, Computer software and hardware, Productivity

Team Electronic Gameplay Combining Different Means of Control

Applications include biofeedback equipment, physical therapy, athletic training, and mind-body medicine.

Langley Research Center, Hampton, Virginia

NASA’s Langley Research Center has developed a technology at the forefront of a new generation of computer and video game environments that trains valuable mental skills, beyond eye-hand coordination, for the personal improvement, not just the diversion, of the user.

Posted in: Briefs, Electronics & Computers, Software, Computer software and hardware, Human machine interface (HMI), Reaction and response times, Education, Education and training

The K Development Language

NASA’s Jet Propulsion Laboratory, Pasadena, California

Graphical modeling tools have gained popularity within engineering communities, but such languages are known to suffer from lack of semantics and mathematical rigor. By supporting a graphical language with a textual language, and mapping graphical models to the textual language, one ensures proper unique semantics of the graphical language. In addition, some engineers prefer to express themselves in textual languages not unlike programming languages. This is in part due to the fact that it can be unnecessarily time-consuming to model graphically, and graphical models take up a considerable amount of visual space. As an example, the definition of a function in K may occupy one line of text, whereas in a graphical modeling language, it is not uncommon that such a specification may occupy one page. Finally, it is easier to provide analytical support for a textual language.

Posted in: Briefs, Electronics & Computers, Software, Mathematical models, Imaging and visualization, Terminology, Identification

MATTC Method for Efficient Prediction of Boundary Layer Transition

Langley Research Center, Hampton, Virginia

The objective of the current innovation was to develop a simple but accurate method for predicting boundary layer transition that would include the growth characteristics of laminar boundary layer disturbances while requiring only the pressure distribution over an aerodynamic surface. Other existing methods either give only an estimate of the transition location [and only for surfaces where the TS (Tollmien–Schlichting) growth is the determiner of transition] with no disturbance growth characteristics, or require boundary layer information that must be extracted from a Navier-Stokes flow solver or obtained from a separate boundary layer solver.

Posted in: Briefs, Electronics & Computers, Software, Mathematical models, Aerodynamics

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.