Lighting

High-Performance Photocatalytic Oxidation Reactor System

Airborne volatile organic chemicals are oxidized using blue LEDs, fiber optics, and visible light-activated catalysts for space and terrestrial air purification. Marshall Space Flight Center, Alabama As crewed space missions extend beyond low Earth orbit, the need to reliably recover potable water is critical. Aboard the International Space Station (ISS), the water is recycled from cabin humidity condensate, urine distillate, and hygiene wash wastes. In spacecraft cabin air environments, off-gassing from equipment, human metabolism, and human personal care products contributes to significant airborne concentrations of volatile organic compounds (VOCs). These polar and water-soluble compounds ultimately dissolve into the humidity condensate and stress the process load, logistics costs, and lifecycle requirements of the water processing systems. The aim of this effort was to develop the High Performance Photocatalytic Oxidation Reactor System (HPPORS) technology for the destruction of airborne VOCs prior to reaching the water processing systems. This innovation will reduce the logistics costs and lifecycle requirements of water processing systems, and help extend NASA missions to include long-duration space habitation and lunar and Mars colonization missions.

Posted in: Briefs, Recycling Technologies, Remediation Technologies, LEDs, Fiber Optics, Photonics

Read More >>

Quantum Dot Light Enhancement Substrate

A cost-competitive solution for increasing the light extraction efficiency of organic light-emitting diodes (OLEDs) with efficient and stable color rendering index (CRI) for solid-state lighting (SSL) was developed and demonstrated. Solution-processable quantum dot (QD) films were integrated into OLED indium tin oxide (ITO)-glass substrates to generate tunable white emission from blue-emitting OLED devices.

Posted in: Briefs, Briefs, TSP, Energy Efficiency, OLEDs

Read More >>

Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high-cost materials such as indium tin oxide (ITO) or indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. For OLED lighting to penetrate into general illumination, economics and sustainable materials are critical.

Posted in: Briefs, Briefs, TSP, Energy Efficiency

Read More >>

GaN-Ready Aluminum Nitride Substrates

The objective of this project was to develop and then demonstrate the efficacy of a cost-effective approach for a low-defect-density substrate on which aluminum indium gallium nitride (AlInGaN) light-emitting diodes (LEDs) can be fabricated. The efficacy of this GaN-ready substrate would then be tested by growing high-efficiency, long-lifetime InxGa1-xN blue LEDs.

Posted in: Briefs, Briefs, TSP, Energy Efficiency

Read More >>

LED Display Engineering

The primary objective of this project was to develop and implement a method that compensates for the inefficiency of the green light-emitting diode (LED). The proposed engineering solution was to use RGBW combination in every pixel to save energy. A 32" x 16" display with pixel spacing of one inch, which is usually used for outdoor applications, was built.

Posted in: Briefs, Briefs, TSP, Energy Efficiency

Read More >>

Self-Activating and Doped Tantalate Phosphors

Phosphors are useful in numerous applications including lighting. Tantalates are very promising materials because they are especially robust and resistant to chemical degradation. Studies have shown that rare-earth tantalates are excellent host lattices for europium (Eu)-doped red-emitting phosphors, excited by blue light.

Posted in: Briefs, Briefs, TSP, Energy Efficiency

Read More >>

Photoluminescent Nanofibers for High-Efficiency Solid-State Lighting

Polymer nanofibers are nanoscale materials whose properties can be adjusted to provide desirable light management performance for high efficiency solid-state lighting luminaires. The polymeric nanofibers at the core of this project have diameters on the order of 100 to 1000nm and a length of more than 1cm.

Posted in: Briefs, Briefs, TSP, Energy Efficiency

Read More >>