Will iris detection become a mainstream smartphone feature?

This week's Question: The Fujitsu Arrows NX F-04G, a new smartphone set for release in Japan, comes with a built-in retinal scanner that can be used for a variety of different functions, including unlocking the device, accessing apps, and making mobile payments. A front-facing infrared camera and an infrared LED light illuminate the user's eyes, verifying his or her unique iris pattern. Although the technology is currently only available in Japan, bigger companies like Samsung are also working on iris-detecting smartphones. What do you think? Will iris detection become a mainstream smartphone feature?

Posted in: Question of the Week, LEDs


High-Performance Photocatalytic Oxidation Reactor System

Airborne volatile organic chemicals are oxidized using blue LEDs, fiber optics, and visible light-activated catalysts for space and terrestrial air purification. Marshall Space Flight Center, Alabama As crewed space missions extend beyond low Earth orbit, the need to reliably recover potable water is critical. Aboard the International Space Station (ISS), the water is recycled from cabin humidity condensate, urine distillate, and hygiene wash wastes. In spacecraft cabin air environments, off-gassing from equipment, human metabolism, and human personal care products contributes to significant airborne concentrations of volatile organic compounds (VOCs). These polar and water-soluble compounds ultimately dissolve into the humidity condensate and stress the process load, logistics costs, and lifecycle requirements of the water processing systems. The aim of this effort was to develop the High Performance Photocatalytic Oxidation Reactor System (HPPORS) technology for the destruction of airborne VOCs prior to reaching the water processing systems. This innovation will reduce the logistics costs and lifecycle requirements of water processing systems, and help extend NASA missions to include long-duration space habitation and lunar and Mars colonization missions.

Posted in: Briefs, Recycling Technologies, Remediation Technologies, LEDs, Fiber Optics, Photonics


Public Lighting System Runs on Solar and Wind Energy

A researcher at the Barcelona College of Industrial Engineering, in collaboration with the company Eolgreen, has developed the first autonomous industrialized public lighting system that works with solar and wind energy. This system, developed after four years of research, is designed for inter-urban roads, motorways, urban parks, and other public areas. It is unique in the world, and reduces the cost by 20% compared with conventional public lighting systems. The prototype is 10 meters high and is fitted with a solar panel, a wind turbine, and a battery. The turbine runs at a speed of 10 to 200 rpm and has a maximum output of 400 watts. Work is being done on a second prototype generator that runs at a lower speed (10 to 60 rpm) and has a lower output (100 W). An electronic control system manages the flow of energy among the solar panel, the wind turbine, the battery, and the light. Source:

Posted in: News, Batteries, Renewable Energy, Solar Power, Wind Power


Remediation and Prevention of Moisture in Electronics

Receiving product complaints and returns may be your first indication that there is a problem with moisture in your electronic product. Moisture in sealed electronics may result in shorting, attenuation problems, mirror and lens fogging, intermittent functionality, and catastrophic failure. The experience your customer has with your product directly affects your brand integrity, which in turn affects sales and profits. Taking steps to correct a moisture issue or prevent it early on in the design stages can help you make large strides in reclaiming or protecting your brand position.

Posted in: White Papers, Electronics


Product of the Month: LED Light Engines for Large FOV Fluorescence Imaging Systems

Innovations in Optics, Inc. (Woburn, MA) offers high power LED Light Engines as excitation illuminators for large field-of-view fluorescent imagers used in life science instruments. LumiBright LE Light Engines feature patented non-imaging optics that direct LED light into a desired cone angle, while producing highly uniform output, both angularly and spatially. The two standard far-field half-angles are 20 and 40 degrees. Available peak LED wavelengths range from 365 nm in the ultraviolet through 970 nm in the near-infrared.

Posted in: Products, Products, LEDs, Photonics


New Compounds Developed to Manufacture Tunable OLED Devices

Researchers have developed new organic compounds characterized by higher modularity, stability, and efficiency that could be applicable for use in electronics or lighting. A proof-of-concept project has begun to verify that the compounds have the photoluminescence and electrochemical properties required for the manufacture of tunable organic LEDs (OLEDs) that can emit in the blue portion of the visible spectrum, thus applying lower voltages and achieving greater efficiency and longer life.

Posted in: News, Energy Efficiency, OLEDs


Researchers Equip Robot with Novel Tactile Sensor

Researchers at MIT and Northeastern University have equipped a robot with a novel tactile sensor that lets it grasp a USB cable draped freely over a hook and insert it into a USB port.The sensor is an adaptation of a technology called GelSight, which was developed by the lab of Edward Adelson, the John and Dorothy Wilson Professor of Vision Science at MIT, and first described in 2009. The new sensor isn’t as sensitive as the original GelSight sensor, which could resolve details on the micrometer scale. But it’s smaller — small enough to fit on a robot’s gripper — and its processing algorithm is faster, so it can give the robot feedback in real time.A GelSight sensor — both the original and the new, robot-mounted version — consists of a slab of transparent, synthetic rubber coated on one side with a metallic paint. The rubber conforms to any object it’s pressed against, and the metallic paint evens out the light-reflective properties of diverse materials, making it much easier to make precise optical measurements.In the new device, the gel is mounted in a cubic plastic housing, with just the paint-covered face exposed. The four walls of the cube adjacent to the sensor face are translucent, and each conducts a different color of light — red, green, blue, or white — emitted by light-emitting diodes at the opposite end of the cube. When the gel is deformed, light bounces off of the metallic paint and is captured by a camera mounted on the same cube face as the diodes.From the different intensities of the different-colored light, the algorithms developed by Adelson’s team can infer the three-dimensional structure of ridges or depressions of the surface against which the sensor is pressed. Source Read other Sensors tech briefs.

Posted in: News, LEDs, Optics, Photonics, Machinery & Automation, Robotics, Sensors