Machinery & Automation

Top Prizes Awarded in the Create the Future Design Contest

On November 7, the top prizes in the 2014 Create the Future Design Contest were presented in New York City. Winners in seven categories, as well as the Grand Prize winner, received awards for their innovations in the annual contest.

Posted in: Machinery & Automation, Robotics, Articles

Read More >>

NASA's Hot 100 Technologies: Robotics, Automation & Control

Inductive Monitoring System IMS software utilizes techniques from model-based reasoning, machine learning, and data mining to build system-monitoring knowledge bases from archived or simulated sensor data. In real time, IMS performs monitoring functions, determining and displaying the degree of deviation from nominal performance. IMS trend analyses can detect conditions that may indicate a failure or required system maintenance.

Posted in: Machinery & Automation, Robotics, Techs for License, Articles

Read More >>

Killer Robots - Army Studies Challenges of Remote Lethality

The military has used and experimented with robots that perform functions such as scouting and surveillance, carrying supplies and detecting and disposing of improvised homemade bombs. However, when it comes to integrating lethality, such as a weapon capable of firing 10 rounds per second onto an unmanned ground vehicle, issues arise such as safety, effectiveness and reliability, as well as military doctrine on how much human involvement is required.

Posted in: Communications, Machinery & Automation, Robotics, Defense, News

Read More >>

Ocean Gliders Measure Melting Polar Ice

The rapidly melting ice sheets on the coast of West Antarctica are a potentially major contributor to rising ocean levels worldwide. Although warm water near the coast is thought to be the main factor causing the ice to melt, the process by which this water ends up near the cold continent is not well understood. Using robotic ocean gliders, Caltech researchers have now found that swirling ocean eddies, similar to atmospheric storms, play an important role in transporting these warm waters to the Antarctic coast—a discovery that will help the scientific community determine how rapidly the ice is melting and, as a result, how quickly ocean levels will rise. "When you have a melting slab of ice, it can either melt from above because the atmosphere is getting warmer or it can melt from below because the ocean is warm," explains lead author Andrew Thompson, assistant professor of environmental science and engineering. "All of our evidence points to ocean warming as the most important factor affecting these ice shelves, so we wanted to understand the physics of how the heat gets there." Because the gliders are small—only about six feet long—and are very energy efficient, they can sample the ocean for much longer periods than large ships can. When the glider surfaces every few hours, it "calls" the researchers via a mobile phone–like device located on the tail. The communication allows the researchers to almost immediately access the information the glider has collected. Like airborne gliders, the bullet-shaped ocean gliders have no propeller; instead they use batteries to power a pump that changes the glider's buoyancy. When the pump pushes fluid into a compartment inside the glider, the glider becomes denser than seawater and less buoyant, thus causing it to sink. If the fluid is pumped instead into a bladder on the outside of the glider, the glider becomes less dense than seawater—and therefore more buoyant—ultimately rising to the surface. Like airborne gliders, wings convert this vertical lift into horizontal motion. Source Also: Learn about Remote Sensing of Ice Sheets and Snow.

Posted in: Batteries, Electronics & Computers, Environmental Monitoring, Green Design & Manufacturing, Motion Control, Test & Measurement, Measuring Instruments, Monitoring, Communications, Machinery & Automation, Robotics, News

Read More >>

Microbot Muscles Self-Assemble and Flex

In a step toward robots smaller than a grain of sand, University of Michigan researchers have shown how chains of self-assembling particles could serve as electrically activated muscles in the tiny machines."We are inspired by ideas of microscopic robots," said Michael Solomon, a professor of chemical engineering. "They could work together and go places that have never been possible before."Solomon and his group demonstrated that some gold plating and an alternating electric field can help oblong particles form chains that extend by roughly 36 percent when the electric field is on.The team started with particles similar to those found in paint, with diameters of about a hundredth the width of a strand of hair. They stretched these particles into football shapes and coated one side of each football with gold. The gilded halves attracted one another in slightly salty water—ideally about half the salt concentration in the sports drink Powerade. The more salt in the water, the stronger the attraction.Left to their own devices, the particles formed short chains of overlapping pairs, averaging around 50 or 60 particles to a chain. When exposed to an alternating electric field, the chains seemed to add new particles indefinitely. But the real excitement was in the way that the chains stretched."We want them to work like little muscles," said Sharon Glotzer, the Stuart W. Churchill Professor of Chemical Engineering. "You could imagine many of these fibers lining up with the field and producing locomotion by expanding and contracting."SourceAlso: Learn about Microelectronic Repair Techniques for Wafer-Level Integration.

Posted in: Electronics & Computers, Materials, Machinery & Automation, Robotics, News

Read More >>

Cockroach Biobots Detect Sound

North Carolina State University researchers have developed technology that allows cyborg cockroaches, or biobots, to pick up sounds with small microphones and seek out the source of the sound. The technology is designed to help emergency personnel find and rescue survivors in the aftermath of a disaster.The researchers have also developed technology that can be used as an “invisible fence” to keep the biobots in the disaster area.“In a collapsed building, sound is the best way to find survivors,” says Dr. Alper Bozkurt, an assistant professor of electrical and computer engineering at NC State and senior author of two papers on the work.The biobots are equipped with electronic backpacks that control the cockroach’s movements. Bozkurt’s research team has created two types of customized backpacks using microphones. One type of biobot has a single microphone that can capture relatively high-resolution sound from any direction to be wirelessly transmitted to first responders.The second type of biobot is equipped with an array of three directional microphones to detect the direction of the sound. The research team has also developed algorithms that analyze the sound from the microphone array to localize the source of the sound and steer the biobot in that direction. SourceAlso: Learn about FINDER (Finding Individuals for Disaster and Emergency Response).

Posted in: Electronics & Computers, Communications, Wireless, Machinery & Automation, Robotics, News

Read More >>

Technology Enables First Test of Actual Turbine Engine Conditions

Because of the difficulty of monitoring turbine engines in operation, most manufacturers test turbine blades either after flight or rely on simulated tests to give them the data on how the various coatings on the blades are performing. Until now, creating an accurate simulation has been out of reach.

Posted in: Manufacturing & Prototyping, Test & Measurement, Monitoring, Aerospace, Aviation, Machinery & Automation, News

Read More >>