Manufacturing & Prototyping

Engineers Use Resin Inks, 3D Printing to Build Lightweight Cellular Composites

Like other manufactured products that use sandwich panel construction to achieve a combination of light weight and strength, turbine blades contain carefully arrayed strips of balsa wood from Ecuador, which provides 95 percent of the world’s supply.As turbine makers produce ever-larger blades—the longest now measure 75 meters, almost matching the wingspan of an Airbus A380 jetliner—they must be engineered to operate virtually maintenance-free for decades. In order to meet more demanding specifications for precision, weight, and quality consistency, manufacturers are searching for new sandwich construction material options.Now, using a cocktail of fiber-reinforced epoxy-based thermosetting resins and 3D extrusion printing techniques, materials scientists at the Harvard School of Engineering and Applied Sciences (SEAS) and the Wyss Institute for Biologically Inspired Engineering have developed lightweight cellular composite materials.The work could have applications in many fields, including the automotive industry where lighter materials hold the key to achieving aggressive government-mandated fuel economy standards. SourceAlso: See more Materials tech briefs.

Posted in: Manufacturing & Prototyping, Rapid Prototyping & Tooling, Materials, Composites, Aerospace, Aviation, News

Read More >>

Full-Cell Evaluation/Screening Technique for New Battery Chemistries

A full-cell configuration with a limited electrolyte in the cell is used to reflect the actual cell build conditions. John H. Glenn Research Center, Cleveland, Ohio A quick and cost-effective evaluation/screening technique for new battery chemistries was developed that integrates the individual advanced cell component in a full-cell format to identify the critical issues, such as cell component interaction and compatibility before proceeding to commercial production. To make the assessment more practical, a unique way of introducing limited electrolyte was developed. This technique enabled fast and low-cost screening to address any potential issues.

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>

Growth Method for Chalcongenide Phase-Change Nanostructures

Nanometer-scale materials can provide smaller devices than those currently available. Ames Research Center, Moffett Field, California Recently, one-dimensional (1-D) nanostructures, such as nanowires and nanotubes, have become the focal point of research in nanotechnology due to their fascinating properties. These properties are intrinsically associated with low dimensionality and small diameters, which may lead to unique applications in various nanoscale devices. It is generally accepted that 1-D nanostructures provide an excellent test ground for understanding the dependence of physical, electrical, thermal, optical, and mechanical properties on material dimensionality and physical size. In particular, 1-D semiconductor nanostructures, which exhibit different properties as compared with their bulk or thin film counterparts, have shown great potential in future nanoelectronics applications in data storage, computing, and sensing devices.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

ELID Grinding of Large Aspheres

Goddard Space Flight Center, Greenbelt, Maryland This work focused on a manufacturing process to produce silicon carbide optical surfaces with low mid-spatial surface errors. Mid-spatial frequency (MSF) and high-spatial frequency (HSF) surface errors in the grinding of fast aspheres are amplified in hard ceramics like silicon carbide due to cyclic tool wear rates, vibration, and tool deformation.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Highly Aligned Electrospun Fibers and Mats

These mats have applications in fuel and solar cells, smart textiles, and in wound dressings and tissue engineering scaffolds. Langley Research Center, Hampton, Virginia A modified electrospinning apparatus has been created for spinning highly aligned polymer fibers. Fiber placement, orientation, and porosity are difficult to control using conventional electrospinning apparatus. Conventional electrospinning creates randomly oriented fibers that are well suited to nonwoven mats, but not to other applications. This new technology will broaden the range of engineering applications of electrospun materials. The apparatus provides a simple and inexpensive means of producing fibers and mats of controlled fiber diameter, porosity, and thickness.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

How Paper-based 3D Printing Works: The Technology and Advantages

3D printers have been with us for decades, routinely turning 3D computer designs into detailed physical objects for product design, education, architecture, healthcare, mapping, historic preservation and other applications. These devices create models in a range of materials, including plastic, plaster, photopolymers, metal and sometimes even food. Each of these materials brings inherent advantages and disadvantages, depending upon your application. There’s one more to consider: paper.

Posted in: Manufacturing & Prototyping, White Papers

Read More >>

Mobile Robots Help Technicians Manufacture Airplanes

A new mobile assistant is being developed to support technicians in the airplane manufacturing industry when applying sealant, measuring, and testing — without putting them at risk. In the EU project known as VALERI (Validation of Advanced, Collaborative Robotics for Industrial Applications), a European consortium is engineering a mobile robot that operates autonomously and moves independently through a production hall, side-by-side with the engineers and technicians. It is not intended to replace the technician, but instead relieve them of stressful and monotonous duties and take over inspection duties.

Posted in: Manufacturing & Prototyping, Industrial Controls & Automation, Sensors, Test & Measurement, Aerospace, Aviation, Machinery & Automation, Robotics, News

Read More >>

White Papers

Liquid Silicone Rubber Takes the Heat
Sponsored by Proto Labs
Multi-Purpose Non-Contact Position/Displacement Sensing
Sponsored by Kaman
Selection of Materials for Medical Applications
Sponsored by RTP
Force Sensors for Design
Sponsored by Tekscan
What They Didn’t Teach You in Engineering School About Heat Transfer
Sponsored by Mentor Graphics
Linear Motors Application Guide
Sponsored by Aerotech

White Papers Sponsored By: