Manufacturing & Prototyping

Thermo-Mechanical Methodology for Stabilizing Shape Memory Alloy Response

This innovation is directly applicable to actuator applications employing shape memory alloys. This innovation is capable of significantly reducing the amount of time required to stabilize the strain-temperature response of a shape memory alloy (SMA). Unlike traditional stabilization processes that take days to weeks to achieve stabilized response, this innovation accomplishes stabilization in a matter of minutes, thus making it highly useful for the successful and practical implementation of SMA-based technologies in real-world applications. The innovation can also be applied to complex geometry components, not just simple geometries like wires or rods.

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>

Silicon Alignment Pins: An Easy Way To Realize a Wafer-to-Wafer Alignment

Etched pockets and silicon pins are used to align two wafers together. Submillimeter heterodyne instruments play a critical role in addressing fundamental questions regarding the evolution of galaxies as well as being a crucial tool in planetary science. To make these instruments compatible with small platforms, especially for the study of the outer planets, or to enable the development of multi-pixel arrays, it is essential to reduce the mass, power, and volume of the existing single-pixel heterodyne receivers.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Advanced Hybrid Spacesuit Concept Featuring Integrated Open Loop and Closed Loop Ventilation Systems

A document discusses the design and prototype of an advanced spacesuit concept that integrates the capability to function seamlessly with multiple ventilation system approaches. Traditionally, spacesuits are designed to operate both dependently and independently of a host vehicle environment control and life support system (ECLSS). Spacesuits that operate independent of vehicle-provided ECLSS services must do so with equipment selfcontained within or on the spacesuit. Suits that are dependent on vehicle-provided consumables must remain physically connected to and integrated with the vehicle to operate properly.

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>

Non-Magnetic, Tough, Corrosion- and Wear-Resistant Knives From Bulk Metallic Glasses and Composites

High-performance knives are used in hunting, fishing, sailing, diving, industrial, and military applications. Quality knives are typically fabricated from high-strength steel alloys. Depending on the application, there are different requirements for mechanical and physical properties that cause problems for steel alloys. For example, diver’s knives are generally used in salt water, which causes rust in steel knives. Titanium diver’s knives are a popular alternative due to their salt water corrosion resistance, but are too soft to maintain a sharp cutting edge. Steel knives are also magnetic, which is undesirable for military applications where the knives are used as a tactical tool for diffusing magnetic mines. Steel is also significantly denser than titanium (8 g/cm3 vs. 4.5 g/cm3), which results in heavier knives for the same size. Steel is hard and wear-resistant, compared with titanium, and can keep a sharp edge during service. A major drawback of both steel and titanium knives is that they must be ground or machined into the final knife shape from a billet. Since most knives have a mirrored surface and a complex shape, manufacturing them is complex. It would be more desirable if the knife could be cast into a net or near-net shape in a single step.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

High-Pressure Lightweight Thrusters

Carbon/carbon composite structures are braided over iridium-lined mandrels and densified by chemical vapor infiltration. Returning samples of Martian soil and rock to Earth is of great interest to scientists. There were numerous studies to evaluate Mars Sample Return (MSR) mission architectures, technology needs, development plans, and requirements. The largest propulsion risk element of the MSR mission is the Mars Ascent Vehicle (MAV). Along with the baseline solid-propellant vehicle, liquid propellants have been considered. Similar requirements apply to other lander ascent engines and reaction control systems.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Robotic Exoskeleton Vastly Improves Quality of Life

Worldwide an estimated 185 million people use a wheelchair daily. A company based in Auckland, New Zealand, has developed an innovative robotic technology that helps people with mobility impairment get back on their feet— the Rex Bionics robotic exoskeleton. Its integrated maxon motors help to ensure smooth limb movement.

Posted in: Rehabilitation & Physical Therapy, Implants & Prosthetics, Biosensors, Mechanical Components, Power Supplies, Electronics, Power Management, Manufacturing & Prototyping, Motion Control, Motors & Drives, Power Transmission, Positioning Equipment, Medical, Orthopedics, Articles, Features, MDB

Read More >>

Optimizing an Electromechanical Device with Multidimensional Analysis Software

Modern CAE software allows engineers to investigate a multitude of design variations that could not possibly be considered using conventional physical prototypes. In this paper we will first illustrate parametric methods for automatically creating virtual prototypes of electromechanical actuators (in our case simple electromagnetic solenoids) using the AMPERES and MAGNETO programs from INTEGRATED Engineering Software. We will then use a specific case study to show how the Tecplot Chorus program can assist in determining optimal design choices.

Posted in: Manufacturing & Prototyping, White Papers

Read More >>