Manufacturing & Prototyping

High-Res Line Camera Measures Magnetic Fields in Real Time

Scientists have developed a high‑resolution magnetic line camera to measure magnetic fields in real time. Field lines in magnetic systems such as generators or motors that are invisible to the human eye can be made visible using this camera. It is especially suitable for industrial applications in quality assurance during the manufacture of magnets.

Posted in: News, Cameras, Sensors, Measuring Instruments

Read More >>

How 3D Printing Will Continue to Transform Manufacturing

3D printing is transforming the manufacturing industry in big ways. From realized design freedom to supply chain efficiencies, 3D printing is contributing largely to the recent upswing in reshoring manufacturing in North America. Read the latest white paper from Stratasys Service Bureaus to learn how 3D printing will continue to transform the industry in the coming years.

Posted in: White Papers, White Papers

Read More >>

Design and Analysis of Metal-to-Composite Nozzle Extension Joints

A design concept and subcomponent are identified that mitigate the stress associated with the coefficient-of-thermal mismatch. Marshall Space Flight Center, Alabama Analysis, design, fabrication, and testing were performed to create a new joint design for potential use in attaching a domestically available carbon-carbon (C–C) nozzle extension to the turbine exhaust manifold of a J-2X engine. Various attachment methods were investigated for a C–C-to-metallic joint, including the use of higher-thermal-expansion ceramic matrix composites both mechanically attached and also integrally fabricated to the C–C nozzle extension. The goal was to determine the advantages and disadvantages of different material and joint systems in order to converge on a design for a domestic joint and nozzle extension design that resulted in all positive margins of safety.

Posted in: Briefs

Read More >>

Modeling Laser Ablation and Plume Chemistry in a Boron Nitride Nanotube Production Rig

Langley Research Center, Hampton, Virginia The future of manned and unmanned spaceflight and exploration depends on economical access to space through multifunctional, lightweight materials. Boron nitride nanotube (BNNT) composites offer distinct advantages for enhanced survivability during long-term flights. A production technique has been developed to manufacture BNNTs that implements laser energy deposition on a boron sample in a pressurized test rig.

Posted in: Briefs, TSP

Read More >>

Damage-Free Finishing of Silicon X-Ray Optics Using Magnetic Field-Assisted Finishing

Goddard Space Flight Center, Greenbelt, Maryland Thin, segmented mirrors have been fabricated from monocrystalline silicon blocks. The material is economically viable, and is virtually free of internal stress because of its nearly perfect crystalline structure. The mirror surfaces will first be accurately figured and finished on thick silicon blocks, then sliced off at the desired thickness by wire electro-discharge machining. A finishing process has been conceived in which existing mirror-finishing processes are adapted to be capable of quickly and accurately figuring and finishing damage-free, segmented, monocrystalline silicon mirrors in a cost-efficient manner.

Posted in: Briefs, TSP

Read More >>

Smart Crucibles and Heat Pipes

Molybdenum and molybdenum alloys are the leading candidates for making the new heat pipe modules. Marshall Space Flight Center, Alabama Near-net-shape vacuum plasma spray (VPS) forming techniques were developed to produce advanced components with internal features such as smart heat pipes and crucibles. The initial results demonstrated the ability to incorporate features such as channels and a porous layer within the wall of a smart crucible.

Posted in: Briefs

Read More >>

Engineers Harvest and Print Parts for New Breed of Aircraft

Student interns and engineers at NASA's Ames Research Center rapidly prototyped and redesigned aircraft using 3D-printed parts. The aircraft was custom-built by repurposing surplus Unmanned Aerial Vehicles (UAVs). By lengthening the wings, the team was able to improve aerodynamic efficiency and help extend the flight time of small, lightweight electric aircraft. The prototype aircraft are constructed using components from Aerovironment RQ-14 Dragon Eye UAVs that NASA acquired from the United States Marine Corps via the General Services Administration's San Francisco office. Unmodified, these small electric aircraft weigh 5.9 pounds, have a 3.75-foot wingspan and twin electric motors, and can carry a one-pound instrument payload for up to an hour. After finalizing designs that featured longer and more slender wings and dual fuselages, the teams printed new parts including wing sections, nose cones, winglets, control surfaces, wing ribs and even propellers using the NASA Ames SpaceShop. The 3-D printed wing sections were reinforced using carbon fiber tubing or aluminum rods to give them extra strength without adding significant weight.Flying as high as 12,500 feet above sea level, multiple small converted Dragon Eye UAVs, including the specialized and highly modified “FrankenEye” platform, will study the chemistry of the eruption plume emissions from Turrialba volcano, near San Jose, Costa Rica. The goal of the activity is to improve satellite data research products, such as computer models of the concentration and distribution of volcanic gases, and transport-pathway models of volcanic plumes. Some volcanic plumes can reach miles above a summit vent, and drift hundreds to thousands of miles from an eruption site and can pose a severe public heath risk, as well as a potent threat to aircraft.SourceAlso: Learn about Real-Time Minimization of Tracking Error for Aircraft Systems.

Posted in: News, Aviation, Rapid Prototyping & Tooling, Motors & Drives

Read More >>