Manufacturing & Prototyping

SWaP-C and Why Your Component Partner Matters

Is SWaP-C important to your project? Then working with the right contract manufacturer is critical to your success. From knowing the unique requirements of military requirements to having the capabilities to maximize component functionality, the right partner for your project can help you decrease the size, weight, power and cost of your electronics. Discover how to select the right partner and what questions to ask in our white paper, “SWaP-C and Why Your Component Partner Matters.” Download it now and learn techniques for ensuring that your next project is a successful one.

Posted in: White Papers

Read More >>

3D Printing: Changing the Economics of Manufacturing Custom Components

With traditional manufacturing technologies, the design and production of custom parts and products can be expensive and time-consuming. That’s because the economics of mass production require a large volume of finished goods over which to amortize the significant costs of prototypes, tooling, setup, assembly, materials, and finishing. Custom products, however, are manufactured in small lots, and for them, a different approach is required. One advanced technology that manufacturers are embracing for its ability to produce custom products quickly and profitably is additive manufacturing, or 3D printing. In this paper, Stratasys presents some of the ways in which 3D printing is enabling manufacturers to create custom products better, faster, and less expensively.

Posted in: White Papers

Read More >>

BioCompatic: LEMO - Northwire's Robust USP Class VI Silicone Alternative

Combining decades of field-proven life science experience, LEMO and Northwire’s collaborative white paper highlights the professional expertise and continual innovation necessary to design and manufacture end-to-end (E2E) connector and cable assembly solutions that meet the rapidly evolving demands of the medical market.

Posted in: White Papers, White Papers, Coatings & Adhesives

Read More >>

White Paper: Alternative Linear Motion Solution

Learn how Nexen’s Roller Pinion System (RPS) delivers a revolutionary alternative to today’s linear motion solutions – with unlimited run length, superior positional accuracy, zero backlash and more.

Posted in: White Papers

Read More >>

New Compounds Developed to Manufacture Tunable OLED Devices

Researchers have developed new organic compounds characterized by higher modularity, stability, and efficiency that could be applicable for use in electronics or lighting. A proof-of-concept project has begun to verify that the compounds have the photoluminescence and electrochemical properties required for the manufacture of tunable organic LEDs (OLEDs) that can emit in the blue portion of the visible spectrum, thus applying lower voltages and achieving greater efficiency and longer life.

Posted in: News, Energy Efficiency, OLEDs

Read More >>

Researchers Measure Stress in 3D-Printed Metal Parts

Lawrence Livermore National Laboratory researchers have developed an efficient method to measure residual stress in metal parts produced by powder-bed fusion additive manufacturing (AM).The 3D-printing process produces metal parts layer by layer using a high-energy laser beam to fuse metal powder particles. When each layer is complete, the build platform moves downward by the thickness of one layer, and a new powder layer is spread on the previous layer.While the method produces quality parts and components, residual stress is a major problem during the fabrication process. Large temperature changes near the last melt spot, and the repetition of this process, result in localized expansion and contraction.An LLNL research team, led by engineer Amanda Wu, has developed an accurate residual stress measurement method that combines traditional stress-relieving methods (destructive analysis) with modern technology: digital image correlation (DIC). The process provides fast and accurate measurements of surface-level residual stresses in AM parts.The team used DIC to produce a set of quantified residual stress data for AM, exploring laser parameters. DIC is a cost-effective, image analysis method in which a dual camera setup is used to photograph an AM part once before it’s removed from the build plate for analysis and once after. The part is imaged, removed, and then re-imaged to measure the external residual stress.SourceAlso: Learn about Design and Analysis of Metal-to-Composite Nozzle Extension Joints.

Posted in: News, Cameras, Rapid Prototyping & Tooling, Metals, Lasers & Laser Systems, Photonics, Measuring Instruments

Read More >>

Virtual Prototyping: Visualizing the Next Generation of Products

The Department of Defense defines a virtual prototype as “A computer-based simulation of a system or subsystem with a degree of functional realism comparable to a physical prototype.” A virtual prototype is built from CAD drawings of separate assemblies that are gradually placed into the whole. Since the drawings of each subassembly are detailed and accurate, you can accurately assess their form (overall shape), fit (ease of as- sembly), and function (making sure it performs as specified). In addition to these traditional three Fs, the virtual prototype can be used for motion studies and studying interactions be- tween the machine and the humans who will use it. Once the design is complete, you can use the digital model to see whether parts interfere as you move them through their com- plete range of motion. In the past, design and analysis have been separate tasks, performed by different teams. With virtual prototyping, these functions are completely entwined.

Posted in: White Papers

Read More >>