Manufacturing & Prototyping

Method for Fabricating Metallic Panels with Deep Stiffener Sections

This method is a rapid, more environmentally friendly, cost-effective process. Langley Research Center, Hampton, Virginia This innovation integrates existing highperformance metallic materials and manufacturing technologies (all of which are now certified and used to produce thinner stiffened panels for launch vehicle structures) in a novel manner to allow fabrication of more structurally efficient panels with stiffeners that are substantially deeper than existing plate stock materials.

Posted in: Briefs

Read More >>

Robust, High-Temperature Containment Cartridges for Microgravity

Other potential applications include chemical processing, heat pipes, power generation equipment, nuclear components, and automotive. Marshall Space Flight Center, Alabama Robust, high-temperature containment cartridges are needed for processing materials science experiments in microgravity. In general, the refractory metals (Nb, Ta, Mo, W, Re) possess the chemical inertness and high melting temperatures desired. Of these materials, niobium and tantalum alloys have been the materials of choice due to their low ductile to brittle transition temperatures, which allow deep-draw forming into cylindrical shapes. The high cost of tantalum and niobium, along with the desire for cartridges resistant to molten zinc and usable to 1,500 °C, demonstrates the need for alternative cartridge materials. Two candidate materials are molybdenum and tungsten alloys. Both have high melting temperatures and cost an order of magnitude less than tantalum and niobium.

Posted in: Briefs

Read More >>

Method for Insertion of Carbon Fiber Through the Thickness of Dense Dry Fiber Preform

Heat shields for re-entry vehicles, and jet engine exhaust components are two potential applications. Ames Research Center, Moffett Field, California Creation of a structural joint for a heat shield for extreme entry environments requires structural fibers penetrating through the thickness of the shield at joint locations. The structural fibers must be made of carbon to withstand extremely high temperatures, i.e. 2000 ºC. Carbon fibers, due to their relatively high modulus (stiffness), are easily damaged and broken when handled by a conventional sewing machine. Special coatings such as nylon are required to increase the durability of the fiber to enable its use in a sewing or tufting process.

Posted in: Briefs

Read More >>

Precision Detector Conductance Definition via Ballistic Thermal Transport

This innovation could be applied in the development of bolometric detector array sensors. Goddard Space Flight Center, Greenbelt, Maryland The characteristics of a thermal detector, such as sensitivity, response time, and saturation power (or energy resolution), are functions of the thermal conductance of the detector to its cryogenic environment. The thermal conductance is specified to achieve a tradeoff among the highest sensitivity, allowed response time, and the desired saturation energy or power budget for the particular application. It is essential to achieve the design thermal conductance (within an acceptable variance) after a thermal detector has been fabricated. Otherwise, the detector will fail to achieve its desired functionality. In addition, the formation of a multi-pixel imaging array becomes difficult and costly when the design thermal conductance is not achieved with high post-fabrication yield.

Posted in: Briefs, TSP, Sensors

Read More >>

Scientists Print in 4D

Scientists at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A. Paulson School of Engineering and Applied Sciences have brought a fourth dimension to their microscale 3D printing technology.

Posted in: News

Read More >>

Thermal Spraying of Coatings Using Resonant Pulsed Combustion

This is a high-volume, high-velocity surface deposition of protective metallic and other coatings on surfaces. John H. Glenn Research Center, Cleveland, Ohio Thermal spray coating is not a new process. There are different techniques utilized that depend on the objective function of the coating, the environment to which the coated piece will be subjected, and the coating material used. In any application, quality is ultimately measured by how well the coating material adheres to the sprayed surface. This, in turn, is controlled by the velocity at which the coating material impinges on the substrate, the size of the molten coating particles, and the degree to which the coating material is prevented from chemically reacting while in a molten state.

Posted in: Briefs, TSP

Read More >>

Plasma Treatments to Assist Fluid Manipulation in Microgravity

Altering the surface energy of container walls permits anchoring of fluids within the container. Lyndon B. Johnson Space Center, Houston, Texas A recent innovation has made manipulation of hazardous laboratory reagents in microgravity easier, thus enabling even more scientific research to be performed on the International Space Station (ISS). Prior to this innovation, moving fluids from container to container was performed only under conditions of redundant and physically separate layers of containment. This design paradigm restricts access to — and direct manipulation of — fluids in microgravity conditions.

Posted in: Briefs

Read More >>