Manufacturing & Prototyping

Process for Coating Substrates With Catalytic Materials

This process can remove volatile organic compounds from indoor air in planes, automobiles, homes, and industrial plants. Langley Research Center, Hampton, Virginia This invention relates to the process of coating substrates with one or more components to form a catalyst; specifically, the process of layering one or more catalytic components onto a honeycomb monolith to form a carbon monoxide oxidation that combines CO and O2 to form CO2, or alternatively, a volatile organic compound oxidation catalyst that combines the compound and O2 to form CO2 and H2O.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Portable Friction Stir Welding Machine

The machine is capable of butt-welding aluminum 1,100 workpieces 1/8 in. (≈3 mm) thick. Marshall Space Flight Center, Alabama A preliminary design of a portable friction stir welding (FSW) machine for use in space has been developed. The in-space FSW machine takes the form of a handheld router tool that is historically used in woodworking applications. With the design of the in-space FSW machine, the FSW tool is directly connected to the motor shaft while the motor is mounted to a small frame that supports the tool. The frame has handlebars that allow the operator to grasp the welder and maneuver it along a desired weld path. The key enabler of the in-space FSW machine is an innovative FSW tool design. The FSW tool is a fixed shoulder-to-shoulder bobbin tool that self-aligns and adjusts to the workpiece. The self-aligning and adjusting FSW (SAA-FSW) tool floats freely in the vertical direction, thereby eliminating any external axial load on the machine or operator. The total weight of the in-space FSW machine is 73 lb (≈33 kg), and it only requires one operator. The machine is capable of butt-welding aluminum 1,100 workpieces 1/8 in. (≈3 mm) thick.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Multimode, Fiber-Coupled, Tungsten Silicide, Superconducting Nanowire Single-Photon Detector Array

Amorphous WSi allows a much greater active area due to lower incidence of nanowire constrictions. NASA’s Jet Propulsion Laboratory, Pasadena, California The superconducting nanowire single-photon detector (SNSPD) arrays created in this innovation were fabricated using a WSi nanowire process. A gold mirror layer is deposited on an oxidized silicon wafer, and amorphous-state WSi is sputtered from a compound target at a thickness of 5 nm. The WSi nanowire is embedded at the center of a three-layer vertical optical cavity consisting of two silica layers and a titanium oxide anti-reflective coating. The layer thicknesses were chosen, on the basis of simulations and measured material parameters, to optimize efficiency at the target communication wavelength of 1,550 nm, and to minimize the polarization dependence of the detector response.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Sidewall Passivation of GaN Avalanche Photodiodes via Atomic Layer Deposition

Atomic layer deposition is explored as a sidewall passivation method for mesa-isolated gallium nitride. NASA’s Jet Propulsion Laboratory, Pasadena, California The visible-blind detection of UV light has important applications in planetary imaging and spectroscopy, astronomy, communications, and defense-related imaging. Future instruments for imaging in the ultraviolet will require improvements in detector capabilities. An all-solid-state ultraviolet detector will enable substantial improvements in mass, volume, complexity, power, and robustness compared with conventional image-tube-based technologies. One new class of solid-state UV detectors includes those based on the gallium nitride (GaN) family of materials. The electronic passivation methods described here are one promising way to produce detectors with the required low dark current characteristics, and show a significant improvement over current state-of-the-art passivation methods. These methods will contribute to a next-generation solar-blind, solid-state UV detector for a wide range of space-based UV instruments.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Virtual Prototyping: Visualizing the Next Generation of Products

The Department of Defense defines a virtual prototype as “A computer-based simulation of a system or subsystem with a degree of functional realism comparable to a physical prototype.” A virtual prototype is built from CAD drawings of separate assemblies that are gradually placed into the whole. Since the drawings of each subassembly are detailed and accurate, you can accurately assess their form (overall shape), fit (ease of as- sembly), and function (making sure it performs as specified). In addition to these traditional three Fs, the virtual prototype can be used for motion studies and studying interactions be- tween the machine and the humans who will use it. Once the design is complete, you can use the digital model to see whether parts interfere as you move them through their com- plete range of motion. In the past, design and analysis have been separate tasks, performed by different teams. With virtual prototyping, these functions are completely entwined.

Posted in: Manufacturing & Prototyping, White Papers

Read More >>

3D Printing and the Future of Manufacturing

3D printing is transforming the manufacturing industry in big ways. From realized design freedom to supply chain efficiencies, 3D printing is contributing largely to the recent upswing in reshoring manufacturing in North America. Read the latest white paper from Stratasys Service Bureaus to learn how 3D printing will continue to transform the industry in the coming years.

Posted in: Manufacturing & Prototyping, White Papers

Read More >>

Design and Analysis of Metal-to-Composite Nozzle Extension Joints

A design concept and subcomponent are identified that mitigate the stress associated with the coefficient-of-thermal mismatch. Marshall Space Flight Center, Alabama Analysis, design, fabrication, and testing were performed to create a new joint design for potential use in attaching a domestically available carbon-carbon (C–C) nozzle extension to the turbine exhaust manifold of a J-2X engine. Various attachment methods were investigated for a C–C-to-metallic joint, including the use of higher-thermal-expansion ceramic matrix composites both mechanically attached and also integrally fabricated to the C–C nozzle extension. The goal was to determine the advantages and disadvantages of different material and joint systems in order to converge on a design for a domestic joint and nozzle extension design that resulted in all positive margins of safety.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>