Manufacturing & Prototyping

Engineers Harvest and Print Parts for New Breed of Aircraft

Student interns and engineers at NASA's Ames Research Center rapidly prototyped and redesigned aircraft using 3D-printed parts. The aircraft was custom-built by repurposing surplus Unmanned Aerial Vehicles (UAVs). By lengthening the wings, the team was able to improve aerodynamic efficiency and help extend the flight time of small, lightweight electric aircraft. The prototype aircraft are constructed using components from Aerovironment RQ-14 Dragon Eye UAVs that NASA acquired from the United States Marine Corps via the General Services Administration's San Francisco office. Unmodified, these small electric aircraft weigh 5.9 pounds, have a 3.75-foot wingspan and twin electric motors, and can carry a one-pound instrument payload for up to an hour. After finalizing designs that featured longer and more slender wings and dual fuselages, the teams printed new parts including wing sections, nose cones, winglets, control surfaces, wing ribs and even propellers using the NASA Ames SpaceShop. The 3-D printed wing sections were reinforced using carbon fiber tubing or aluminum rods to give them extra strength without adding significant weight.Flying as high as 12,500 feet above sea level, multiple small converted Dragon Eye UAVs, including the specialized and highly modified “FrankenEye” platform, will study the chemistry of the eruption plume emissions from Turrialba volcano, near San Jose, Costa Rica. The goal of the activity is to improve satellite data research products, such as computer models of the concentration and distribution of volcanic gases, and transport-pathway models of volcanic plumes. Some volcanic plumes can reach miles above a summit vent, and drift hundreds to thousands of miles from an eruption site and can pose a severe public heath risk, as well as a potent threat to aircraft.SourceAlso: Learn about Real-Time Minimization of Tracking Error for Aircraft Systems.

Posted in: News, Aerospace, Aviation, Manufacturing & Prototyping, Rapid Prototyping & Tooling, Motion Control, Motors & Drives


2-in-1 Motor Increases Range of Electric Cars

Scientists from Nanyang Technological University (NTU) and German Aerospace Centre (DLR) have invented a 2-in-1 electric motor that increases the range of electric vehicles. The engine integrates the traditional electric motor with the air-conditioning compressor, typically two separate units. This novel, space-saving design allows the use of bigger batteries, which can increase the range of electric vehicles by an additional 15 to 20 percent.

Posted in: News, Energy, Energy Efficiency, Manufacturing & Prototyping, Motion Control, Motors & Drives, Automotive, Transportation


Technology Enables First Test of Actual Turbine Engine Conditions

Because of the difficulty of monitoring turbine engines in operation, most manufacturers test turbine blades either after flight or rely on simulated tests to give them the data on how the various coatings on the blades are performing. Until now, creating an accurate simulation has been out of reach.

Posted in: News, Aerospace, Aviation, Manufacturing & Prototyping, Machinery & Automation, Monitoring, Test & Measurement


3D-Printed Power Inverter Enables Lighter Electric Vehicles

Using 3D printing and novel semiconductors, researchers at the Department of Energy’s Oak Ridge National Laboratory have created a power inverter that could make electric vehicles lighter, more powerful, and more efficient.At the core of this development is wide bandgap material made of silicon carbide, with qualities superior to standard semiconductor materials. Power inverters convert direct current into the alternating current that powers the vehicle. The Oak Ridge inverter achieves much higher power density with a significant reduction in weight and volume.Using additive manufacturing, researchers optimized the inverter’s heat sink, allowing for better heat transfer throughout the unit. This construction technique allowed them to place lower-temperature components close to the high-temperature devices, further reducing the electrical losses and reducing the volume and mass of the package.The research group’s first prototype, a liquid-cooled all-silicon carbide traction drive inverter, features 50-percent-printed parts. Initial evaluations confirmed an efficiency of nearly 99 percent, surpassing DOE’s power electronics target and setting the stage for building an inverter using entirely additive manufacturing techniques.Building on the success of this prototype, researchers are working on an inverter with an even greater percentage of 3D-printed parts in commercially available vehicles. SourceAlso: See other Electronics tech briefs.

Posted in: News, Manufacturing & Prototyping, Rapid Prototyping & Tooling, Semiconductors & ICs, Automotive, Transportation


Underwater Robot Skims for Port Security

MIT researchers unveiled an oval-shaped submersible robot, a little smaller than a football, with a flattened panel on one side that it can slide along an underwater surface to perform ultrasound scans.Originally designed to look for cracks in nuclear reactors’ water tanks, the robot could also inspect ships for the false hulls and propeller shafts that smugglers frequently use to hide contraband. Because of its small size and unique propulsion mechanism — which leaves no visible wake — the robots could, in theory, be concealed in clumps of algae or other camouflage. Fleets of them could swarm over ships at port without alerting smugglers and giving them the chance to jettison their cargo.Sampriti Bhattacharyya, a graduate student in mechanical engineering, built the main structural components of the robot using a 3-D printer. Half of the robot — the half with the flattened panel — is waterproof and houses the electronics. The other half is permeable and houses the propulsion system, which consists of six pumps that expel water through rubber tubes.Two of those tubes vent on the side of the robot opposite the flattened panel, so they can keep it pressed against whatever surface the robot is inspecting. The other four tubes vent in pairs at opposite ends of the robot’s long axis and control its locomotion.SourceAlso: Learn about Underwater Localization for Transit and Reconnaissance Autonomy.

Posted in: News, Imaging, Manufacturing & Prototyping, Rapid Prototyping & Tooling, Motion Control, Power Transmission, Machinery & Automation, Robotics


3D Printer That Could Build a Home in 24 Hours Wins Global Design Competition

New York, NY – Contour Crafting, a computerized construction method that rapidly 3D prints large-scale structures directly from architectural CAD models, has been awarded the grand prize of $20,000 in the 2014 "Create the Future" Design Contest. Contour Crafting automates the construction of whole structures and radically reduces the time and cost of construction. The large-scale 3D printing technology is revolutionary to the construction industry and could lead to affordable building of high-quality, low-income housing; the rapid construction of emergency shelters; and on-demand housing in response to disasters. NASA is looking at the technology for building moon and Mars bases. Behrokh Khoshnevis, a professor at University of Southern California, who invented Contour Crafting, views this invention as a proven concept. “Bringing 3D printing to construction is bringing a concept to a proven application. For many years, building has been done in layers – concrete foundation blocks, brick laying, structural framing, etc.” “I am very happy to receive this award and find it to be very timely as I am in the process of fund raising and I think this recognition will help me greatly in furthering the project,” said Khoshnevis. Contour Crafting was among the 1,074 new product ideas submitted in the 12th annual design contest, which was established in 2002 to recognize and reward engineering innovations that benefit humanity, the environment, and the economy. This year’s design contest was co-sponsored by COMSOL ( and Mouser Electronics ( Analog Devices and Intel were supporting sponsors. In addition to the grand prize of $20,000, first-place winners (of Hewlett-Packard workstations) were named in seven categories: *Aerospace & Defense: The Polariton Interferometer - a Novel Inertial Navigation System Frederick Moxley A stealth navigation system that provides precise course-plotting while operating independently from GPS. *Automotive/Transportation: Continuously Variable Displacement Engine Steve Arnold A continuously variable stroke engine that operates at 30% better fuel efficiency than conventional thick stroke engine designs. *Consumer Products: NanoFab a Box! Jonathan Moritz (Team Leader) An educational kit that brings nanomanufacturing out of the cleanroom and into the classroom. *Electronics: A Paradigm Shift for SMT Electronics Jim Hester (Team Leader) Micro-coil springs that provide flexible electrical interconnections for integrated circuit packages, preventing connection breaks due to heat and vibration. *Machinery/Automation/Robotics  – sponsored by Maplesoft: Automatic Eye Finder & Tracking System Rikki Razdan (Team Leader) Real-time point-of-gaze eye tracking system that allows users to control computer input through "Look and Click" applications.  *Medical: HemeChip for Early Diagnosis of Sickle Cell Disease Yunus Alapan (Team Leader) A biochip that can rapidly, easily, and conclusively identify the hemoglobin type in blood to diagnose Sickle Cell Disease in newborns. *Sustainable Technologies: Ecovent Systems - Making Every Room the Right Temperature Dipul Patel (Team Leader) A system of wireless vents and sensors that makes any forced air heating and cooling system smarter by directing conditioned air where it’s needed most. Finalists were selected by senior editors at Tech Briefs Media Group and judged by an independent panel of design engineers. Visitors to the contest Web site could vote on entries, with the 10 most popular designs awarded a Sphero mobile game system by Orbotix. For more information, visit          

Posted in: News, Automotive, Electronic Components, Electronics & Computers, Green Design & Manufacturing, Manufacturing & Prototyping, Rapid Prototyping & Tooling, Diagnostics, Medical, Nanotechnology, Machinery & Automation, Semiconductors & ICs, Computer-Aided Design (CAD), Software


3D Printer Heads to International Space Station

The first 3D printer is soon to fly into Earth orbit, finding a home aboard the International Space Station (ISS). The size of a small microwave, the unit is called Portal. The hardware serves as a testbed for evaluating how well 3D printing and the microgravity of space combine. The soon-to-fly 3D printer can churn out plastic objects within a span of 15 minutes to an hour.The technology works by extruding heated plastic, and then builds successive layers to make a three-dimensional object. In essence, the test on the ISS might well lead to establishing a “machine shop” in space. The 3D printer experiment is being done under the tech directorate's Game Changing Development Program, a NASA thrust that seeks to identify and rapidly mature innovative/high impact capabilities and technologies for infusion in a broad array of future NASA missions.According to the team, manufacturing assets in space, as opposed to launching them from Earth, will accelerate and broaden space development while providing unprecedented access for people on Earth to use in-space capabilities. SourceAlso: Learn about Ammonia Leak Detection on the ISS.

Posted in: News, Aerospace, Manufacturing & Prototyping, Rapid Prototyping & Tooling, Materials, Plastics, Test & Measurement


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.