Manufacturing & Prototyping

Hot Isostatic Pressing of 60-Nitinol

The material 60-Nitinol (60wt%Ni-40wt%Ti) has a unique combination of physical properties, including high hardness, low apparent elastic modulus, and resistance to saltwater corrosion. These properties give the material tremendous potential for use in aerospace and defense-related components such as bearings, gears, and other apparatuses. Various methods of primary processing are being explored for fabrication of high-performance components that are free of metallurgical defects that might lead to premature failure. Hot isostatic pressing (HIP) is one process under consideration. The steps in the HIP process include (a) filling a sealed canister of the appropriate dimensions with powder, (b) heating the canister under vacuum to remove volatile and gaseous contents, (c) applying heat and pressure to the evacuated and sealed canister to consolidate the contents, and (d) removing the canister.

Posted in: Briefs, Manufacturing & Prototyping, Fabrication, Materials properties, Reliability

Read More >>

Logistics for Building Radiation Storm Shelters and their Operational Evaluation

Various habitat structures were tested for use in exploration activities.Over the past three years, NASA has been studying the operational effectiveness and astronaut protection efficacy of numerous radiation protection shelters for use in space exploration activities outside of Earth's magnetosphere. The work was part of NASA's Advanced Exploration Systems (AES) RadWorks Storm Shelter project. Fabricated items were integrated into mockup deep space habitat vehicle sections for operational evaluations. Two full-scale human-in-loop simulations were designed, fabricated, and implemented. The goal was to provide design and performance assessment information for consideration by mission designers who must quantify the radiation protection characteristics of their exploration trade space.

Posted in: Briefs, Manufacturing & Prototyping, Protective structures, Radiation protection, Spacecraft

Read More >>

Vapor-Barrier Vacuum Isolation System

Applications include metal fabrication in the automotive, aerospace, sporting goods, and medical industries.Electron Beam Freeform Fabrication, or EBF3, is a process that uses an electron beam gun, a dual wire feed, and computer controls to manufacture metallic structures for building parts or tools in hours, rather than days or weeks. EBF3 can manufacture complex geometries in a single operation, and provides efficient use of power and feedstock. The technology has a wide range of applications, including automotive, aerospace, and rapid prototyping. It can build large metallic parts measuring feet in length, and has been reduced in size and power to enable zero-gravity experiments conducted on NASA's Reduced Gravity aircraft.

Posted in: Briefs, Manufacturing & Prototyping, CAD, CAM, and CAE, Rapid prototyping, Fabrication, Metallurgy

Read More >>

Silicon Micro-Emitters for Microfluidic Electrospray Propulsion Systems

Advances in microfabrication capabilities are enabling the development of micro-needles for highly compact electrospray systems.JPL's Microfluidic Electrospray Propulsion (MEP) thruster design is based on a microfabricated electrospray system with a capillary-force-driven feed system that uses indium metal as the propellant. This architecture provides an extremely compact, modular system scalable to a wide range of applications from micro spacecraft to large, space-based telescopes.

Posted in: Briefs, Manufacturing & Prototyping, Architecture, Microelectromechanical devices, Propellants, Spacecraft fuel, Silicon alloys

Read More >>

Use of Beam Deflection to Control an Electron Beam Wire Deposition Process

NASA Langley Research Center researchers have a strong technology foundation in the use of electron-beam (e-beam) deposition for freeform fabrication of complex shaped metal parts. While e-beam wire deposition is of interest for rapid prototyping of metal parts, cost-effective near-net shape manufacturing, and potential use in space, it is also of intense interest for industrial welding and fabrication in a range of applications, from small components to large aerospace structures. Through significant advancements in techniques to improve control of the process, NASA greatly expands upon the capabilities of the e-beam fabrication and welding process.

Posted in: Briefs, Manufacturing & Prototyping, Performance upgrades, Fabrication, Welding, Metals

Read More >>

Thermal Stir Welding Process

NASA's Marshall Space Flight Center is developing an improved joining technology called thermal stir welding that improves upon fusion welding and friction stir welding. This new technology enables a superior joining method by allowing manufacturers to join dissimilar materials and to weld at high rates. NASA's technology offers users an exciting alternative to state-of-the-art fusion and friction stir welding technologies.

Posted in: Briefs, Manufacturing & Prototyping, Manufacturing equipment and machinery, Welding

Read More >>

Systems, Apparatuses, and Methods for Using Durable Adhesively Bonded Joints for Sandwich Structures

A preform insert enables redundant bond lines and mass efficient load transfer across the joint.NASA'S Langley Research Center has developed a new adhesively bonded joint concept for curved and flat panel sandwich architectures. A woven preform, inserted into the seam between sandwich panels, provides a larger total bonding area and multiple load paths for an improved distribution of load through the joint. NASA is able to create structures by joining sections of sandwich panels or curved shells. The new joint provides more durable load transfer and redundant load paths compared to current state-of-the-art adhesively bonded strap joints.

Posted in: Briefs, Manufacturing & Prototyping, Product development, Joining, Adhesives and sealants

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.