Manufacturing & Prototyping

Improving Friction Stir Welds Using Laser Peening

This technique can be used in any application of friction stir welding, including automotive, railroad, and maritime industries. Friction stir welding (FSW) has emerged as a promising solid-state process with encouraging results, particularly when used on high-strength aerospace aluminum alloys that are generally difficult to weld. Laser peening has been applied to the mechanical and fatigue properties of welded joints. Laser peening introduces a compressive residual stress at the surface that can extend several millimeters or deeper into the material. These residual stresses resulting from laser peening can be significantly higher and deeper than for conventional shot peening, resulting in superior mechanical and fatigue properties in FSW.

Posted in: Briefs, TSP, Manufacturing & Prototyping, Finite element analysis, Peening, Welding


Methodology of Evaluating Margins of Safety in Critical Brazed Joints

This methodology provides a guide consisting of design, testing, and structural analysis steps developed to assure positive strength margins of safety (MS) in critical brazed joints used for assembly of flight and non-flight structures.

Posted in: Briefs, TSP, Manufacturing & Prototyping, Finite element analysis, Joining, Parts


Additive Manufacturing of Ti-6Al-4V Alloy Components for Spacecraft Applications

Additive manufacturing is a viable and affordable process to manufacture complex parts for aerospace, medical, and automotive applications. In the past two decades, there have been significant advancements in the field of additive manufacturing (AM) of titanium alloy (Ti-6Al-4V) and other metallic components for aerospace applications.

Posted in: Briefs, Manufacturing & Prototyping, Rapid prototyping, Powder metallurgy, Titanium alloys, Parts, Spacecraft


Hermetic Seal Designs for Sample Return Sample Tubes

Prototype sample tube seals prevent material loss and maintain sample integrity. Prototypes have been developed of potential hermetic sample sealing techniques for encapsulating samples in a ≈1-cm-diameter thin-walled sample tube that are compatible with IMSAH (Integrated Mars Sample Acquisition and Handling) architecture. Techniques include a heat-activated, finned, shape memory alloy plug; a contracting shape memory alloy activated cap; an expanding shape memory alloy plug; and an expanding torque plug.

Posted in: Briefs, TSP, Manufacturing & Prototyping, Seals and gaskets, Test equipment and instrumentation


Thermo-Mechanical Methodology for Stabilizing Shape Memory Alloy Response

This innovation is directly applicable to actuator applications employing shape memory alloys. This innovation is capable of significantly reducing the amount of time required to stabilize the strain-temperature response of a shape memory alloy (SMA). Unlike traditional stabilization processes that take days to weeks to achieve stabilized response, this innovation accomplishes stabilization in a matter of minutes, thus making it highly useful for the successful and practical implementation of SMA-based technologies in real-world applications. The innovation can also be applied to complex geometry components, not just simple geometries like wires or rods.

Posted in: Briefs, TSP, Manufacturing & Prototyping, Alloys, Smart materials


Silicon Alignment Pins: An Easy Way To Realize a Wafer-to-Wafer Alignment

Etched pockets and silicon pins are used to align two wafers together.Submillimeter heterodyne instruments play a critical role in addressing fundamental questions regarding the evolution of galaxies as well as being a crucial tool in planetary science. To make these instruments compatible with small platforms, especially for the study of the outer planets, or to enable the development of multi-pixel arrays, it is essential to reduce the mass, power, and volume of the existing single-pixel heterodyne receivers.

Posted in: Briefs, Manufacturing & Prototyping, Downsizing, Spectroscopy, Silicon alloys, Fittings, Parts


Advanced Hybrid Spacesuit Concept Featuring Integrated Open Loop and Closed Loop Ventilation Systems

A document discusses the design and prototype of an advanced spacesuit concept that integrates the capability to function seamlessly with multiple ventilation system approaches. Traditionally, spacesuits are designed to operate both dependently and independently of a host vehicle environment control and life support system (ECLSS). Spacesuits that operate independent of vehicle-provided ECLSS services must do so with equipment selfcontained within or on the spacesuit. Suits that are dependent on vehicle-provided consumables must remain physically connected to and integrated with the vehicle to operate properly.

Posted in: Briefs, TSP, Manufacturing & Prototyping, Heating, ventilation, and air conditioning systems (HVAC), Spacesuits


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.