Manufacturing & Prototyping

Thermal Mechanical Preparation of Glass Spheres

The forming process allows a very wide variety of material to be processed into spheres. Samples of lunar regolith have included small glass spheres. Most literature has suggested the small spheres were formed by meteorite impacts. The resulting transformation of kinetic energy to thermal energy caused the lunar surface to melt. The process yielded glass spheres. Recreating a meteorite impact that yields glass spheres is very challenging. Furthermore, the melting temperature of certain minerals on the Moon precludes the use of standard thermal techniques.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Additive Manufacturing of Ti-6Al-4V Alloy Components for Spacecraft Applications

Additive manufacturing is a viable and affordable process to manufacture complex parts for aerospace, medical, and automotive applications. In the past two decades, there have been significant advancements in the field of additive manufacturing (AM) of titanium alloy (Ti-6Al-4V) and other metallic components for aerospace applications.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Hermetic Seal Designs for Sample Return Sample Tubes

Prototype sample tube seals prevent material loss and maintain sample integrity. Prototypes have been developed of potential hermetic sample sealing techniques for encapsulating samples in a ≈1-cm-diameter thin-walled sample tube that are compatible with IMSAH (Integrated Mars Sample Acquisition and Handling) architecture. Techniques include a heat-activated, finned, shape memory alloy plug; a contracting shape memory alloy activated cap; an expanding shape memory alloy plug; and an expanding torque plug.

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>

Thermo-Mechanical Methodology for Stabilizing Shape Memory Alloy Response

This innovation is directly applicable to actuator applications employing shape memory alloys. This innovation is capable of significantly reducing the amount of time required to stabilize the strain-temperature response of a shape memory alloy (SMA). Unlike traditional stabilization processes that take days to weeks to achieve stabilized response, this innovation accomplishes stabilization in a matter of minutes, thus making it highly useful for the successful and practical implementation of SMA-based technologies in real-world applications. The innovation can also be applied to complex geometry components, not just simple geometries like wires or rods.

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>

Silicon Alignment Pins: An Easy Way To Realize a Wafer-to-Wafer Alignment

Etched pockets and silicon pins are used to align two wafers together. Submillimeter heterodyne instruments play a critical role in addressing fundamental questions regarding the evolution of galaxies as well as being a crucial tool in planetary science. To make these instruments compatible with small platforms, especially for the study of the outer planets, or to enable the development of multi-pixel arrays, it is essential to reduce the mass, power, and volume of the existing single-pixel heterodyne receivers.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Advanced Hybrid Spacesuit Concept Featuring Integrated Open Loop and Closed Loop Ventilation Systems

A document discusses the design and prototype of an advanced spacesuit concept that integrates the capability to function seamlessly with multiple ventilation system approaches. Traditionally, spacesuits are designed to operate both dependently and independently of a host vehicle environment control and life support system (ECLSS). Spacesuits that operate independent of vehicle-provided ECLSS services must do so with equipment selfcontained within or on the spacesuit. Suits that are dependent on vehicle-provided consumables must remain physically connected to and integrated with the vehicle to operate properly.

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>

Non-Magnetic, Tough, Corrosion- and Wear-Resistant Knives From Bulk Metallic Glasses and Composites

High-performance knives are used in hunting, fishing, sailing, diving, industrial, and military applications. Quality knives are typically fabricated from high-strength steel alloys. Depending on the application, there are different requirements for mechanical and physical properties that cause problems for steel alloys. For example, diver’s knives are generally used in salt water, which causes rust in steel knives. Titanium diver’s knives are a popular alternative due to their salt water corrosion resistance, but are too soft to maintain a sharp cutting edge. Steel knives are also magnetic, which is undesirable for military applications where the knives are used as a tactical tool for diffusing magnetic mines. Steel is also significantly denser than titanium (8 g/cm3 vs. 4.5 g/cm3), which results in heavier knives for the same size. Steel is hard and wear-resistant, compared with titanium, and can keep a sharp edge during service. A major drawback of both steel and titanium knives is that they must be ground or machined into the final knife shape from a billet. Since most knives have a mirrored surface and a complex shape, manufacturing them is complex. It would be more desirable if the knife could be cast into a net or near-net shape in a single step.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

White Papers

Fundamentals of Vector Network Analysis Primer
Sponsored by Rohde and Schwarz
Fiber Optic Rotary Joints Add a Spin to Sensing, Mobile, and Robotic Fiber Systems
Sponsored by Princetel
6 Ways Software Rendering Boosts Embedded System Graphics
Sponsored by ENSCO Avionics
Putting FPGAs to Work in Software Radio Systems
Sponsored by Pentek
Unique Method for Orifice Production
Sponsored by Bird Precision
Fundamentals of Vector Network Analysis Primer
Sponsored by Rohde and Schwarz A and D

White Papers Sponsored By: