Manufacturing & Prototyping

Metal-Assisted Fabrication of Biodegradable Porous Silicon Nanostructures

Silicon nanostructures are fabricated from single-crystal silicon by an electroless chemical etch process. Porous silicon nanowires are fabricated by two-step, metal-assisted electroless chemical etching of p-type or n-type silicon wafers. This method, in combination with nanolithography or nanopatterning, can be applied to fabricate porous silicon nanostructures of different shapes and sizes, such as nanorods, nanobelts, nanostrips, and nanochains. The specific resistivity of the silicon substrate, and composition of the etching solution, determine the porosity and pore size or lack thereof of the resulting nanostructures. Silicon doping, type of metal catalyst, concentrations of H2O2, and solvent all affect the formation of porous nanostructures at various resistivity ranges of silicon. A phase diagram summarizing the relation of porosification and doping, metal, concentrations of H2O2, and solvent can be generated. In this innovation, high-aspect-ratio porous silicon nanostructures, such as those previously mentioned, were fabricated from single-crystal silicon by an electroless chemical etch process. A metal film, metal nanofeatures, or metal nanoparticles were coated on the silicon substrate first, and a solution of HF and hydrogen peroxide was then used to anisotropically etch the silicon to form the porous silicon nanostructures. Up to hundreds of micron-long high-aspect-ratio porous silicon nanostructures can be fabricated, and the patterns of the cross-section of porous silicon structures can be controlled by photolithography, nanolithography, or nanoparticle-assisted patterning. The porosity is related to the resistivity range of the silicon substrate, the metal catalysts, the chemical concentration, and the additive solvent. The fabricated porous silicon nanostructure is biodegradable, and the degradation time can be controlled by surface treatments. Porous silicon nanowires can be fabricated with a two-step process. A nanostructured metal layer can be deposited on a silicon substrate by an electroless chemical deposition or electrochemical deposition. This step determines the shape of the final nanowires. Alternatively, metal nanoparticles can be spun on the silicon surface to form a metal layer, or a metal layer can be physically or chemically deposited on the silicon through a nanopatterned mask. The metal-coated silicon can be etched in a solution of HF, water, and H2O2 to produce porous silicon nanowires. Solvent can be added to the solution to modulate the features of the porous silicon nanowires. This work was done by Mauro Ferrari, Xuewu Liu, and Ciro Chappini of the University of Texas Health Science Center at Houston for Johnson Space Center. For further information, contact the JSC Innovation Partnerships Office at (281) 483-3809. In accordance with Public Law 96-517, the contractor has elected to retain title to this invention. Inquiries concerning rights for its commercial use should be addressed to:   The University of Texas  Health and Science Center at Houston  Office of Technology Management  7000 Fannin Street, Suite 720  Houston, TX 77030 MSC-24690-1

Posted in: Manufacturing & Prototyping, Semiconductors & ICs, Briefs

Read More >>

Post-Growth, In Situ Adhesion of Carbon Nanotubes to a Substrate for Robust CNT Cathodes

This technology can be used down-hole in oil wells, and in high-temperature, high-pressure, corrosive environments in the automotive industry. The field emission electron sources using carbon nanotubes (CNTs) are being targeted for low-power vacuum microelectronic applications for harshenvironment operation (high temperature, pressure, and corrosive atmosphere). While CNTs have demonstrated excellent properties in terms of low threshold field, low-power operation, and high current densities, one problem with vacuum electronic applications is poor adhesion of CNTs to the substrate on which they are synthesized. The chemical vapor deposition (CVD) process used to grow CNTs on silicon or other metallic substrates using an iron catalyst with a thin oxide diffusion barrier layer has consistently provided reproducible growth. The CNTs are only surface- adhering in these cases, and are easily removed from the surface with the application of minor forces — typically pressures of 20 to 60 kPa. This causes catastrophic failures of CNT field emitters since the applied field could exceed the adhesion strength of CNTs to the substrate.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Thermal Mechanical Preparation of Glass Spheres

The forming process allows a very wide variety of material to be processed into spheres. Samples of lunar regolith have included small glass spheres. Most literature has suggested the small spheres were formed by meteorite impacts. The resulting transformation of kinetic energy to thermal energy caused the lunar surface to melt. The process yielded glass spheres. Recreating a meteorite impact that yields glass spheres is very challenging. Furthermore, the melting temperature of certain minerals on the Moon precludes the use of standard thermal techniques.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Additive Manufacturing of Ti-6Al-4V Alloy Components for Spacecraft Applications

Additive manufacturing is a viable and affordable process to manufacture complex parts for aerospace, medical, and automotive applications. In the past two decades, there have been significant advancements in the field of additive manufacturing (AM) of titanium alloy (Ti-6Al-4V) and other metallic components for aerospace applications.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Hermetic Seal Designs for Sample Return Sample Tubes

Prototype sample tube seals prevent material loss and maintain sample integrity. Prototypes have been developed of potential hermetic sample sealing techniques for encapsulating samples in a ≈1-cm-diameter thin-walled sample tube that are compatible with IMSAH (Integrated Mars Sample Acquisition and Handling) architecture. Techniques include a heat-activated, finned, shape memory alloy plug; a contracting shape memory alloy activated cap; an expanding shape memory alloy plug; and an expanding torque plug.

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>

Thermo-Mechanical Methodology for Stabilizing Shape Memory Alloy Response

This innovation is directly applicable to actuator applications employing shape memory alloys. This innovation is capable of significantly reducing the amount of time required to stabilize the strain-temperature response of a shape memory alloy (SMA). Unlike traditional stabilization processes that take days to weeks to achieve stabilized response, this innovation accomplishes stabilization in a matter of minutes, thus making it highly useful for the successful and practical implementation of SMA-based technologies in real-world applications. The innovation can also be applied to complex geometry components, not just simple geometries like wires or rods.

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>

Silicon Alignment Pins: An Easy Way To Realize a Wafer-to-Wafer Alignment

Etched pockets and silicon pins are used to align two wafers together. Submillimeter heterodyne instruments play a critical role in addressing fundamental questions regarding the evolution of galaxies as well as being a crucial tool in planetary science. To make these instruments compatible with small platforms, especially for the study of the outer planets, or to enable the development of multi-pixel arrays, it is essential to reduce the mass, power, and volume of the existing single-pixel heterodyne receivers.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>