Manufacturing & Prototyping

Making Superconducting Welds Between Superconducting Wires

Parts of a superconducting circuit can be made from different metals. A technique for making superconducting joints between wires made of dissimilar superconducting metals has been devised. The technique is especially suitable for fabrication of superconducting circuits needed to support persistent electric currents in electromagnets in diverse cryogenic applications. Examples of such electromagnets include those in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) systems and in superconducting quantum interference devices (SQUIDs).

Posted in: Briefs, TSP, Manufacturing & Prototyping

Read More >>

Method for Thermal Spraying of Coatings Using Resonant-Pulsed Combustion

High-volume, high-velocity surface deposition allows protective metal coatings to be applied to otherwise vulnerable surfaces. A method has been devised for high-volume, high-velocity surface deposition of protective metallic coatings on otherwise vulnerable surfaces. Thermal spraying is used whereby the material to be deposited is heated to the melting point by passing through a flame. Rather than the usual method of deposition from the jet formed from the combustion products, this innovation uses non-steady combustion (i.e. high- frequency, periodic, confined bursts), which generates not only higher temperatures and heat transfer rates, but exceedingly high impingement velocities an order of magnitude higher than conventional thermal systems. Higher impingement rates make for better adhesion. The high heat transfer rates developed here allow the deposition material to be introduced, not as an expensive powder with high surface-area-to-volume, but in convenient rod form, which is also easier and simpler to feed into the system. The nonsteady, resonant combustion process is self-aspirating and requires no external actuation or control and no high-pressure supply of fuel or air.

Posted in: Briefs, TSP, Manufacturing & Prototyping

Read More >>

Capillography of Mats of Nanofibers

These mats can be the basis of small devices and instruments. Capillography (from the Latin capillus, “hair”, and the Greek graphein, “to write”) is a recently conceived technique for forming mats of nanofibers into useful patterns. The concept was inspired by experiments on carpetlike mats of multiwalled carbon nanotubes. Capillography may have the potential to be a less-expensive, less- time-consuming alternative to electron- beam lithography as a means of nanoscale patterning for the fabrication of small devices and instruments.

Posted in: Briefs, TSP, Manufacturing & Prototyping

Read More >>

Improved Gas Filling and Sealing of an HC-PCF

Compact hermetic joint is formed to seal connectorized all-fiber gas reference cell. An improved packaging approach has been devised for filling a hollow-core photonic-crystal fiber (HC-PCF) with a gas, sealing the HC-PCF to retain the gas, and providing for optical connections and, optionally, a plumbing fitting for changing or augmenting the gas filling. Gas-filled HC-PCFs can be many meters long and have been found to be attractive as relatively compact, lightweight, rugged alternatives to conventional gas-filled glass cells for use as molecular-resonance frequency references for stabilization of lasers in some optical-metrology, lidar, optical-communication, and other advanced applications. Prior approaches to gas filling and sealing of HC-PCFs have involved, variously, omission of any attempt to connectorize the PCF, connectorization inside a vacuum chamber (an awkward and expensive process), or temporary exposure of one end of an HC-PCF to the atmosphere, potentially resulting in contamination of the gas filling. Prior approaches have also involved, variously, fusion splicing of HC-PCFs with other optical fibers or other termination techniques that give rise to Fresnel reflections of about 4 percent, which results in output intensity noise.

Posted in: Briefs, TSP, Manufacturing & Prototyping

Read More >>

Thermal Spray Formation of Polymer Coatings

This innovation forms a sprayable polymer film using powdered precursor materials and an in-process heating method. This device directly applies a powdered polymer onto a substrate to form an adherent, mechanically-sound, and thickness-regulated film. The process can be used to lay down both fully dense and porous, e.g., foam, coatings. This system is field-deployable and includes power distribution, heater controls, polymer constituent material bins, flow controls, material transportation functions, and a thermal spray apparatus.

Posted in: Briefs, Manufacturing & Prototyping

Read More >>

Fabricating Large-Area Sheets of Single-Layer Graphene by CVD

Such sheets are components for high-speed digital and RF electronics for defense and commercial communications. This innovation consists of a set of methodologies for preparing large area (>1 cm2) domains of single-atomic-layer graphite, also called graphene, in single (two-dimensional) crystal form. To fabricate a single graphene layer using chemical vapor deposition (CVD), the process begins with an atomically flat surface of an appropriate substrate and an appropriate precursor molecule containing carbon atoms attached to substituent atoms or groups. These molecules will be brought into contact with the substrate surface by being flowed over, or sprayed onto, the substrate, under CVD conditions of low pressure and elevated temperature. Upon contact with the surface, the precursor molecules will decompose. The substituent groups detach from the carbon atoms and form gas-phase species, leaving the unfunctionalized carbon atoms attached to the substrate surface. These carbon atoms will diffuse upon this surface and encounter and bond to other carbon atoms. If conditions are chosen carefully, the surface carbon atoms will arrange to form the lowest energy single-layer structure available, which is the graphene lattice that is sought.

Posted in: Briefs, TSP, Manufacturing & Prototyping

Read More >>

Heat Transfer Analysis for Optimizing Solar Cell Casting Equipment

Finite element analysis was used to develop a miniature furnace to cast the solar cell wafers. Solar Power Industries’ (SPI) current annual production capacity for processing polycrystalline silicon feedstock into completed solar cells has grown to 40 megawatts, with plans to increase capacity to 250 megawatts over the next several years. SPI’s solar cell manufacturing process consists of three main steps:   Ingot and Wafer Production—High-quality silicon feedstock (containing specific quantities of dopants such as boron in order to alter electrical properties) is melted and solidified inside a directional solidification furnace to cast polycrystalline silicon ingots. The ingots are cut into rectangular blocks with a square cross-section, and then the blocks are sawed into thin multicrystalline wafers. Cell Production — The wafers are etched to remove surface damage caused by sawing. The wafers are then processed in a series of steps to produce photovoltaic cells. Module Assembly — Individual cells are connected by soldering to flat wires. Strings of cells are then joined to parallel connector wires and laminated to produce a solar module.

Posted in: Briefs, Manufacturing & Prototyping

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.