Manufacturing & Prototyping

Artificial Hair Cells for Sensing Flows

Small, robust sensors can be fabricated on a variety of substrates. The purpose of this article is to present additional information about the flow-velocity sensors described briefly in the immediately preceding article. As noted therein, these sensors can be characterized as artificial hair cells that implement an approximation of the sensory principle of flow-sensing cilia of fish: A cilium is bent by an amount proportional to the flow to which it is exposed. A nerve cell at the base of the cilium senses the flow by sensing the bending of the cilium. In an artificial hair cell, the artificial cilium is a microscopic cantilever beam, and the bending of an artificial cilium is measured by means of a strain gauge at its base (see Figure 1).

Posted in: Briefs, Manufacturing & Prototyping

Read More >>

Manufacturing Large Membrane Mirrors at Low Cost

Shapes are determined by edge retention fixtures rather than by precise molds. Relatively inexpensive processes have been developed for manufacturing lightweight, wide-aperture mirrors that consist mainly of reflectively coated, edge-supported polyimide membranes. The polyimide and other materials in these mirrors can withstand the environment of outer space, and the mirrors have other characteristics that make them attractive for use on Earth as well as in outer space:

Posted in: Briefs, Manufacturing & Prototyping

Read More >>

Double-Vacuum-Bag Process for Making Resin-Matrix Composites

To prevent formation of voids, volatiles are removed before applying consolidation pressure. A double-vacuum-bag process has been devised as a superior alternative to a single-vacuum-bag process used heretofore in making laminated fiber-reinforced resin-matrix composite-material structural components. This process is applicable to broad classes of high-performance matrix resins — including polyimides and phenolics — that emit volatile compounds (solvents and volatile by-products of resin-curing chemical reactions) during processing. The superiority of the double-vacuum-bag process lies in enhanced management of the volatile compounds. Proper management of volatiles is necessary for making composite material components of high quality: if not removed and otherwise properly managed, volatiles can accumulate in interior pockets as resins cure, thereby forming undesired voids in the finished products.

Posted in: Briefs, Manufacturing & Prototyping

Read More >>

Pulse-Flow Microencapsulation System

Microcapsules are produced continuously under controlled, sterile conditions. The pulse-flow microencapsulation system (PFMS) is an automated system that continuously produces a stream of liquid-filled microcapsules for delivery of therapeutic agents to target tissues. Prior microencapsulation systems have relied on batch processes that involve transfer of batches between different apparatuses for different stages of production followed by sampling for acquisition of quality-control data, including measurements of size. In contrast, the PFMS is a single, microprocessor- controlled system that performs all processing steps, including acquisition of quality-control data. The quality-control data can be used as real-time feedback to ensure the production of large quantities of uniform microcapsules.

Posted in: Briefs, Manufacturing & Prototyping

Read More >>

Automated Low-Gravitation Facility Would Make Optical Fibers

A report describes a proposed automated facility that would be operated in outer space to produce high-quality optical fibers from fluoride-based glasses, free of light-scattering crystallites that form during production in normal Earth gravitation. Before launch, glass preforms would be loaded into a mechanism that would later dispense them. A dispensed preform would be melted, cooled to its glass-transition temperature rapidly enough to prevent crystallization, cooled to ambient temperature, then pushed into a preform tip heater, wherein it would be reheated to the softening temperature. A robotic manipulator would touch a fused-silica rod to the softened glass to initiate pulling of a fiber. The robot would pull the fiber to an attachment on a take-up spool, which would thereafter be turned to pull the fiber. The diameter of the fiber would depend on the pulling speed and the viscosity of the glass at the preform tip. Upon depletion of a preform, the robot would place the filled spool in storage and position an empty spool to pull a fiber from a new preform. Pulling would be remotely monitored by a video camera and restarted by remote command if a break in the fiber were observed.

Posted in: Briefs, TSP, Manufacturing & Prototyping

Read More >>

Techniques for Connecting Superconducting Thin Films

Junctions can be tailored to obtain desired levels of electrical resistance. Several improved techniques for connecting superconducting thin films on substrates have been developed. The techniques afford some versatility for tailoring the electronic and mechanical characteristics of junctions between superconductors in experimental electronic devices. The techniques are particularly useful for making superconducting or alternatively normally conductive junctions (e.g., Josephson junctions) between patterned superconducting thin films in order to exploit electron quantum-tunneling effects.

Posted in: Briefs, Manufacturing & Prototyping

Read More >>

Versatile Friction Stir Welding/Friction Plug Welding System

A single system could perform any FSW or FPW operation. A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following:

Posted in: Briefs, TSP, Manufacturing & Prototyping

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.