Manufacturing & Prototyping

Heat Treatment of Friction-Stir-Welded 7050 Aluminum Plates

Strength, ductility, and resistance to stress corrosion cracking are increased. A method of heat treatment has been developed to reverse some of the deleterious effects of friction stir welding of plates of aluminum alloy 7050. This alloy is considered unweldable by arc and high-energy-density beam fusion welding processes. The alloy can be friction stir welded, but as-welded workpieces exhibit low ductility, low tensile and yield strengths, and low resistance to stress corrosion cracking. Heat treatment according to the present method increases tensile and yield strengths, and minimizes or eliminates stress corrosion cracking. It also increases ductility.

Posted in: Briefs, Manufacturing & Prototyping

Read More >>

Manufacturing Precise, Lightweight Paraboloidal Mirrors

Success depends on the proper selection of materials and process conditions. A process for fabricating a precise, diffraction- limited, ultralightweight, composite-material (matrix/fiber) paraboloidal telescope mirror has been devised. Unlike the traditional process of fabrication of heavier glass-based mirrors, this process involves a minimum of manual steps and subjective judgment. Instead, this process involves objectively controllable, repeatable steps; hence, this process is better suited for mass production.

Posted in: Briefs, TSP, Manufacturing & Prototyping

Read More >>

Automated Solvent Seaming of Large Polyimide Membranes

Success depends on precise control of all relevant process details. A solvent-based welding process enables the joining of precise, cast polyimide membranes at their edges to form larger precise membranes. The process creates a homogeneous, optical - quality seam between abutting membranes, with no overlap and with only a very localized area of figure disturbance. The seam retains 90 percent of the strength of the parent material. The process was developed for original use in the fabrication of wide - aperture membrane optics, with areal densities densities of less than 1 kg/m2, for lightweight telescopes, solar concentrators, antennas, and the like to be deployed in outer space. The process is just as well applicable to the fabrication of large precise polyimide membranes for flat or inflatable solar concentrators and antenna reflectors for terrestrial applications.

Posted in: Briefs, Manufacturing & Prototyping

Read More >>

Controlling Force and Depth in Friction Stir Welding

The proportionality between penetration force and penetration depth is exploited. Feedback control of the penetration force applied to a pin tool in friction stir welding has been found to be a robust and reliable means for controlling the depth of penetration of the tool. This discovery has made it possible to simplify depth control and to weld with greater repeatability, even on workpieces with long weld joints.

Posted in: Briefs, Manufacturing & Prototyping

Read More >>

Modifications of Fabrication of Vibratory Microgyroscopes

The goal is to increase production yields. A micromachining process for the fabrication of vibratory microgyroscopes from silicon wafers, and aspects of the microgyroscope design that are inextricably linked with the fabrication process, have been modified in an effort to increase production yields from perspectives of both quantity and quality. Prior to the modifications, the effective production yield of working microgyroscopes was limited to one or less per wafer. The modifications are part of a continuing effort to improve the design and increase production yields to more than 30 working microgyroscopes per wafer.

Posted in: Briefs, TSP, Manufacturing & Prototyping

Read More >>

Two Heat-Transfer Improvements for Gas Liquefiers

Medical oxygen liquefiers could operate more efficiently. Two improvements in heat-transfer design have been investigated with a view toward increasing the efficiency of refrigerators used to liquefy gases. The improvements could contribute to the development of relatively inexpensive, portable oxygen liquefiers for medical use.

Posted in: Briefs, Manufacturing & Prototyping

Read More >>

Treatments To Produce Stabilized Aluminum Mirrors for Cryogenic Uses

Selected heat treatments are performed between and after fabrication steps.Five metallurgical treatments have been tested as means of stabilizing mirrors that are made of aluminum alloy 6061 and are intended for use in cryogenic applications. Aluminum alloy 6061 is favored as a mirror material by many scientists and engineers. Like other alloys, it shrinks upon cool-down from room temperature to cryogenic temperature. This shrinkage degrades the optical quality of the mirror surfaces. Hence, the metallurgical treatments were tested to determine which one could be most effective in minimizing the adverse optical effects of cooldown to cryogenic temperatures. Each of the five metallurgical treatments comprises a multistep process, the steps of which are interspersed with the steps of the mirror- fabrication process. The five metallurgical- treatment/fabrication–process combinations were compared with each other and with a benchmark fabrication process, in which a mirror is made from an alloy blank by (1) symmetrical rough machining, (2) finish machining to within 0.006 in. (˜ 0.15 mm) of final dimensions, and finally (3) diamond turning to a mirror finish. Two specimens ? a flat mirror and a spherical mirror ? were fabricated in each case. The blanks for all the specimens were cut from the same plate of aluminum alloy 6061-T651. (The suffix “T651” denotes a stress-relieving treatment that involves reducing residual stresses by mechanical stretching of the previously untreated alloy.) Of the five metallurgical-treatment/fabricationprocess combinations tested, the one found to exert the greatest stabilizing effect comprises the following ten steps:

Posted in: Briefs, TSP, Manufacturing & Prototyping

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.