Manufacturing & Prototyping

Damage-Free Finishing of Silicon X-Ray Optics Using Magnetic Field-Assisted Finishing

Goddard Space Flight Center, Greenbelt, Maryland Thin, segmented mirrors have been fabricated from monocrystalline silicon blocks. The material is economically viable, and is virtually free of internal stress because of its nearly perfect crystalline structure. The mirror surfaces will first be accurately figured and finished on thick silicon blocks, then sliced off at the desired thickness by wire electro-discharge machining. A finishing process has been conceived in which existing mirror-finishing processes are adapted to be capable of quickly and accurately figuring and finishing damage-free, segmented, monocrystalline silicon mirrors in a cost-efficient manner.

Posted in: Briefs, TSP, Manufacturing & Prototyping, Optics, Finishing


Smart Crucibles and Heat Pipes

Molybdenum and molybdenum alloys are the leading candidates for making the new heat pipe modules. Marshall Space Flight Center, Alabama Near-net-shape vacuum plasma spray (VPS) forming techniques were developed to produce advanced components with internal features such as smart heat pipes and crucibles. The initial results demonstrated the ability to incorporate features such as channels and a porous layer within the wall of a smart crucible.

Posted in: Briefs, Manufacturing & Prototyping, Forming, Parts


Multi-Step DRIE Process to Fabricate Silicon-Based THz Components

Commercial applications include airport screening systems, explosives detectors, nondestructive testing, and wireless communications. Terahertz (THz) frequency radiometers, spectrometers, and radars are promising instruments for the remote sensing of planetary atmospheres such as Mars, Venus, Jupiter, and Saturn, and their moons such as Titan, Europa, Ganymede, and others. For these long-term planetary missions, severe constraints are put on the mass and power budget for the payload instruments.

Posted in: Briefs, TSP, Manufacturing & Prototyping, Radar, Semiconductors, Test equipment and instrumentation


Plasma Reduction of Lunar Regolith for In-Space Fabrication

Plasma processing effectively produced agglutinate and glassy spherules — analog particles similar to those found on the lunar surface. Marshall Space Flight Center, Alabama The in situ production of vital gases and raw materials on the lunar surface is an integral part of NASA’s exploration vision. Development of processes for extraction of oxygen and metallics from the lunar regolith will be vital not only for life support on the lunar surface, but also for spacecraft propulsion to travel further beyond low Earth orbit. This will have a direct impact on cost reduction associated with minimizing the raw material mass from Earth. Aside from utilization of in situ resources, one of the significant limitations of current simulant is the lack of constituents, such as agglutinates. These agglutinates are typically mineral fragments of the lunar regolith that are held together by glass and, depending on location, may constitute 60% to 70% of the lunar regolith.

Posted in: Briefs, Manufacturing & Prototyping, Human factors, Fabrication, Gases, Metals, Spacecraft


Method for Determining Self-Reacting Friction Stir Weld Schedules

This new process is quicker and more effective. Lyndon B. Johnson Space Center, Houston, Texas This invention establishes a process to define a viable self-reacting friction stir weld (SR-FSW) schedule (parameter settings) for a given material combination. The focus of this process results in a SR-FSW schedule that is insensitive to intentional changes or normal process variation in pin force at a given rotation and travel speed. Viable is defined as a weld schedule that is usable in a production environment and is able to accommodate normal production variations.

Posted in: Briefs, Manufacturing & Prototyping, Welding, Test procedures


Flexible, Lightweight Vacuum Shell for Load-Responsive Multilayer Insulation for High Thermal Performance

There are substantial reductions in weight and improvements in performance. Goddard Space Flight Center, Greenbelt, Maryland Better thermal insulation is needed to insulate cryogenic propellants used by NASA for launch vehicles, spacecraft, and orbiting fuel depots. In particular, cryotank insulation during in-air pre-launch and launch ascent stages currently uses spray-on foam insulation (SOFI), which is extremely problematic.

Posted in: Briefs, TSP, Manufacturing & Prototyping, Propellants, Insulation, Launch vehicles, Spacecraft


Bulk Separation and Manipulation of Carbon Nanotubes by Type

Lyndon B. Johnson Space Center, Houston, Texas The utility of this invention is to extract metals (semi-metals) or semiconductors from bulk nanotube samples. The bulk material is a mixture of the two. These materials can then be used to clone a particular type of nanotube, place a particular type in a device, generate smart materials, or make sensing elements.

Posted in: Briefs, Manufacturing & Prototyping, Materials identification, Metals, Nanomaterials, Semiconductors


White Papers

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.