Manufacturing & Prototyping

Multi-Step DRIE Process to Fabricate Silicon-Based THz Components

Commercial applications include airport screening systems, explosives detectors, nondestructive testing, and wireless communications. NASA’s Jet Propulsion Laboratory, Pasadena, California Terahertz (THz) frequency radiometers, spectrometers, and radars are promising instruments for the remote sensing of planetary atmospheres such as Mars, Venus, Jupiter, and Saturn, and their moons such as Titan, Europa, Ganymede, and others. For these long-term planetary missions, severe constraints are put on the mass and power budget for the payload instruments.

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>

Flexible, Lightweight Vacuum Shell for Load-Responsive Multilayer Insulation for High Thermal Performance

There are substantial reductions in weight and improvements in performance. Goddard Space Flight Center, Greenbelt, Maryland Better thermal insulation is needed to insulate cryogenic propellants used by NASA for launch vehicles, spacecraft, and orbiting fuel depots. In particular, cryotank insulation during in-air pre-launch and launch ascent stages currently uses spray-on foam insulation (SOFI), which is extremely problematic.

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>

Integrally Woven Fiber Architecture for Composite Turbine Blades

John H. Glenn Research Center, Cleveland, Ohio Composite turbine blades are currently fabricated by laying up multiple layers of fibers in the form of either unidirectional prepregs or thin woven cloth. Composites formed in this manner have poor through-thickness strength. It is also difficult, if not impossible, to form trailing edges as thin as necessary for optimum engine performance.

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>

Assembly and Packaging to Mass-Produce Carbon Nanotube Vacuum Microdevices and Circuits

An assembly process allows mixing and matching of different types of electrode and dielectric layers assembled in a stack to create multi-electrode vacuum devices. NASA’s Jet Propulsion Laboratory, Pasadena, California Field-emission electron sources using carbon nanotubes (CNTs) are being targeted for low-power vacuum microelectronic applications for harsh-environment operation (high temperature, pressure, and corrosive atmosphere). While CNTs have demonstrated excellent properties in terms of low threshold field, low-power operation, and high-current densities, one of the problems that has persisted for vacuum electronic applications is the low yield of multi-electrode vacuum devices such as diodes, triodes, tetrodes, pentodes, etc.

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>

Full-Cell Evaluation/Screening Technique for New Battery Chemistries

A full-cell configuration with a limited electrolyte in the cell is used to reflect the actual cell build conditions. John H. Glenn Research Center, Cleveland, Ohio A quick and cost-effective evaluation/screening technique for new battery chemistries was developed that integrates the individual advanced cell component in a full-cell format to identify the critical issues, such as cell component interaction and compatibility before proceeding to commercial production. To make the assessment more practical, a unique way of introducing limited electrolyte was developed. This technique enabled fast and low-cost screening to address any potential issues.

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>

Solar Panel and System Design to Reduce Heating and Optimize Corridors for Lower-Risk Planetary Aerobraking

New approach features aggressive load reduction to reduce risk. Goddard Space Flight Center, Greenbelt, Maryland This innovation presents a spacecraft aerobraking approach that reduces heating and optimizes corridors, which reduces overall risk. This is accomplished by combining solar panel aspect ratio and edge features with simple spacecraft packaging optimization and integrated thermal-analysis techniques that also allow specifying a more benign temperature corridor.

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>

Novel Chemistry for Deposition of MgF2 Thin Films

NASA’s Jet Propulsion Laboratory, Pasadena, California Magnesium fluoride (MgF2) thin films are useful for many different optics applications. In particular, they are useful for ultraviolet anti-reflective and protective coatings. However, in the far UV, one needs a very small, controllable amount of material to get the best optical performance. That is difficult to achieve with conventional methods. Atomic layer deposition (ALD) is an ideal UV-compatible thin-film deposition technique due to its ability to deposit uniform, pin-hole free films with angstrom-level thickness control. Therefore, it is an ideal technique to use to deposit protective thin films in the 2-nm thickness range. However, conventional ALD-MgF2 reactions are very unpredictable due to the low reactivity and volatility of the precursors.

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>

White Papers

10 Ways to Make Your Wiring and Harness Design Faster and Better
Sponsored by Mentor Graphics
Are you tired of maintaining UPS Systems?
Sponsored by Falcon
Sensors For Use In Aerospace, Military and Industrial Markets
Sponsored by Columbia Research
Data Acquisition and I/O Control Applications Handbook
Sponsored by United Electronic Industries
White Papers: Using FPGAs to Improve Embedded Designs
Sponsored by Sealevel
Learn LED Test Techniques
Sponsored by Keithley

White Papers Sponsored By: