Manufacturing & Prototyping

Process to Fabricate Specific Sized Monodisperse Polystyrene Microparticles

Langley Research Center, Hampton, Virginia A new method was developed to prepare monodisperse nano to microparticles of polystyrene ranging from 0.5 to 2.5 microns in relatively large-quantity batches (2 L, 10% by weight in water). Current commercial sources are very expensive and can typically only be acquired on a relatively small scale. Monodisperse polystyrene in this size range is an important component of laser velocimetry measurements in wind tunnels, but has many other potential uses. Polystyrene microparticles have uses in paints/coatings, adhesives, bio/immunoassays, reaction catalysts, and chromatography materials. The main benefits of this technology are low cost, scalability, and selectable size.

Posted in: Briefs, TSP

Read More >>

Lunar Cold Trap Contamination by Landing Vehicles

Software and methods are developed to assess the magnitude and distribution of lunar surface contamination caused by the engine exhaust of a landing vehicle. John F. Kennedy Space Center, Florida The emerging interest in lunar mining poses a threat of contamination to pristine craters at the lunar poles, which act as cold traps for water, and may harbor other valuable minerals. Lunar Prospector type missions will be looking for volatile (molecular) compounds that may be masked by the exhaust gases from landing vehicle engines. The possible self-contamination of the landing site could negate the scientific value of the soil samples taken in the vicinity of the landing site. Self-contamination may also lead to false-positive readings of resources available on the lunar surface. This innovation addresses the software and methods needed to assess the magnitude and distribution of lunar surface contamination caused by the engine exhaust of landing vehicles on known or planned descent trajectories.

Posted in: Briefs, TSP

Read More >>

Process for Coating Substrates With Catalytic Materials

This process can remove volatile organic compounds from indoor air in planes, automobiles, homes, and industrial plants. Langley Research Center, Hampton, Virginia This invention relates to the process of coating substrates with one or more components to form a catalyst; specifically, the process of layering one or more catalytic components onto a honeycomb monolith to form a carbon monoxide oxidation that combines CO and O2 to form CO2, or alternatively, a volatile organic compound oxidation catalyst that combines the compound and O2 to form CO2 and H2O.

Posted in: Briefs, TSP

Read More >>

Multimode, Fiber-Coupled, Tungsten Silicide, Superconducting Nanowire Single-Photon Detector Array

Amorphous WSi allows a much greater active area due to lower incidence of nanowire constrictions. NASA’s Jet Propulsion Laboratory, Pasadena, California The superconducting nanowire single-photon detector (SNSPD) arrays created in this innovation were fabricated using a WSi nanowire process. A gold mirror layer is deposited on an oxidized silicon wafer, and amorphous-state WSi is sputtered from a compound target at a thickness of 5 nm. The WSi nanowire is embedded at the center of a three-layer vertical optical cavity consisting of two silica layers and a titanium oxide anti-reflective coating. The layer thicknesses were chosen, on the basis of simulations and measured material parameters, to optimize efficiency at the target communication wavelength of 1,550 nm, and to minimize the polarization dependence of the detector response.

Posted in: Briefs, TSP

Read More >>

Modeling Laser Ablation and Plume Chemistry in a Boron Nitride Nanotube Production Rig

Langley Research Center, Hampton, Virginia The future of manned and unmanned spaceflight and exploration depends on economical access to space through multifunctional, lightweight materials. Boron nitride nanotube (BNNT) composites offer distinct advantages for enhanced survivability during long-term flights. A production technique has been developed to manufacture BNNTs that implements laser energy deposition on a boron sample in a pressurized test rig.

Posted in: Briefs, TSP

Read More >>

Damage-Free Finishing of Silicon X-Ray Optics Using Magnetic Field-Assisted Finishing

Goddard Space Flight Center, Greenbelt, Maryland Thin, segmented mirrors have been fabricated from monocrystalline silicon blocks. The material is economically viable, and is virtually free of internal stress because of its nearly perfect crystalline structure. The mirror surfaces will first be accurately figured and finished on thick silicon blocks, then sliced off at the desired thickness by wire electro-discharge machining. A finishing process has been conceived in which existing mirror-finishing processes are adapted to be capable of quickly and accurately figuring and finishing damage-free, segmented, monocrystalline silicon mirrors in a cost-efficient manner.

Posted in: Briefs, TSP

Read More >>

Multi-Step DRIE Process to Fabricate Silicon-Based THz Components

Commercial applications include airport screening systems, explosives detectors, nondestructive testing, and wireless communications. NASA’s Jet Propulsion Laboratory, Pasadena, California Terahertz (THz) frequency radiometers, spectrometers, and radars are promising instruments for the remote sensing of planetary atmospheres such as Mars, Venus, Jupiter, and Saturn, and their moons such as Titan, Europa, Ganymede, and others. For these long-term planetary missions, severe constraints are put on the mass and power budget for the payload instruments.

Posted in: Briefs, TSP

Read More >>