Manufacturing & Prototyping

Fabrication of BSA 14-23 Superhydrophobic Sponges as Efficient Oil and Organic Liquid Absorbents

This approach is fast, simple, inexpensive, widely applicable, and scalable.

Oil spills have become an environmental problem due to the growth of offshore oil exploration, production, and transportation. There are several methods that have been used to clean up oil spills such as chemical dispersants, water skimming, and using absorbent materials. Although skimming is the most common method for cleaning large spills, this method is time-consuming, expensive, and poorly separates oil and water. Chemical dispersants can be used to break up oil slicks into droplets that can be easily dissipated in water, but the mixture of oil and dispersants can be toxic and damage marine ecosystems. Thus, the use of oil sorbents can be an effective method to ease oil collection, and sorbents have a high capacity for removing oil from a targeted site.

Posted in: Briefs, Manufacturing & Prototyping
Read More >>

Suspended Platform Improves Efficiency in Large-Scale Manufacturing

The platform enables access to large, external surfaces with minimum footprint and maximum system rigidity.

The Flying Carpet is a platform of any shape, size, or material that is suspended by a four-point cable system. The platform can serve as a movable scaffolding and worker positioning system that enables workers to maneuver themselves, parts, and tools throughout a large work volume for tasks such as ship repair and aircraft paint removal with up to 20 times improved efficiency over hand-built scaffolding. The Flying Carpet is a cable-supported platform that uses single-axis jog-, velocity-, and force-control modes.

Posted in: Briefs, Manufacturing & Prototyping
Read More >>

Positioning Stage

Assembly of optic-electronic devices requires precision alignment of optical fibers with lasers or sensors, and then bonding. A worker looking through a microscope at the end of a fiber conventionally executes this precision alignment and bonding process.

Posted in: Briefs, Manufacturing & Prototyping
Read More >>

Functionalization of Carbon Nanotubes

These multi-functional composite materials have applications in body armor, radiators, chemical sensors, computers, and electronics.

Carbon nanotubes (CNTs) have attracted much attention due to their extraordinary mechanical and unique electronic properties. CNTs are being studied for applications in high-strength/low-weight composites and other applications. In order to alter the CNT properties for particular applications, chemical functionalization may be necessary. Development of multifunctional composite materials may require functionalization of a collection of CNTs to allow the tubes to be dispersed more easily in a host matrix.

Posted in: Briefs, Manufacturing & Prototyping
Read More >>

Carbon Fiber and Fiber Metal Laminate Composites Reinforced with Metallic Glass

This new class of composites has applications in aerospace, automotive, sporting goods, military, and defense.

Carbon fiber (CF) and carbon fiber composites have gained widespread use in recent years due to their unique combination of high strength and stiffness-to-weight ratio. To improve their mechanical properties, CF is sometimes used as a laminate, usually with aluminum, to improve the impact and residual strength properties of the CF. By bonding sheets of CF and aluminum, it was noticed that fatigue crack growth rates could be reduced in the laminates, as compared to monolithic sheets of either material. These composites have been referred to as CF metal laminates (CFMLs), and they are generally comprised of thin sheets of metal alloys (not always Al) and plies of fiber (not always carbon fiber) reinforced with polymeric materials.

Posted in: Briefs, Manufacturing & Prototyping
Read More >>

Novel Threading Enables New Approach to Golf Clubs

Fastener threading technology used on shuttle engines reduces vibration in golf clubs.

Spinoff is NASA's annual publication featuring successfully commercialized NASA technology. This commercialization has contributed to the development of products and services in the fields of health and medicine, consumer goods, transportation, public safety, computer technology, and environmental resources.

Posted in: Articles, Manufacturing & Prototyping, Collaboration and partnering, Vibration, Fasteners
Read More >>

Using Sensor Fusion to Analyze Laser Processing in Additive Manufacturing

Sensor: “A device that detects or measures a physical property and records, indicates, or otherwise responds to it.” A sensor is a device that detects a physical quantity and responds by transmitting a signal.

Posted in: Articles, Imaging, Manufacturing & Prototyping, Lasers & Laser Systems, Photonics, Lasers, Sensors and actuators, Additive manufacturing
Read More >>

Products of Tomorrow: April 2017

This column presents technologies that have applications in commercial areas, possibly creating the products of tomorrow. To learn more about each technology, see the contact information provided for that innovation.

Posted in: Articles, Products, Manufacturing & Prototyping
Read More >>

Melt Infiltration of SiC/SiC Preforms Using Cr-Si Alloys

These composites can be used in aircraft engine turbine blades, vanes, combustor lines, and shrouds.

The goal of this work was to develop engineered matrix SiC/SiC ceramic composites with crack blunting and self-healing capabilities for 1588 to 1755 K applications. The work optimized the temperature and time conditions for melt-infiltrating SiC/SiC preforms with chromium silicide alloys, and established that these alloys do not react with the coatings on the SiC fibers. Traditional ways of fabricating SiC fiber-based ceramic matrix composites (CMCs) use silicon to melt-infiltrate the CMC preforms, where the Si is often converted to SiC by reaction with carbon. The traditional SiC matrices have poor high-temperature creep properties due to the presence of residual silicon. They also have low fracture toughness and a low matrix cracking stress.

Posted in: Briefs, Manufacturing & Prototyping, Product development, Ceramics, Coatings, colorants, and finishes, Composite materials, Silicon alloys, Smart materials
Read More >>

Method of Making a Composite Panel Having Subsonic Transverse Wave Speed Characteristics

Applications include internal aircraft structures, buildings, and enclosures for machines.

NASA's Langley Research Center has developed an enhanced design for a composite panel with a recessed core. NASA designed it to decrease the radiation efficiency and increase the transmission loss while maintaining load-bearing capability so it could be used in applications such as aircraft floors. Similar to traditional composite panels, the innovation possesses low weight characteristics, but in addition, it can be used in load-bearing applications. The invention was developed for NASA's Quiet Aircraft Technology Program. The superior design of the composite panel can be used in a wide variety of commercial applications wherever honeycomb is needed and improved acoustics are desired. NASA has patented and tested the novel design, and is interested in attracting development partners and potential licensees for the recessed core composite panel design.

Posted in: Briefs, Manufacturing & Prototyping, Aircraft structures, Design processes, Flooring, Composite materials
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.