Manufacturing & Prototyping

Mount Protects Thin-Walled Glass or Ceramic Tubes From Large Thermal and Vibration Loads

Low-stress, low-profile mounts were developed for photomultiplier tubes for imaging systems, biological sensing, and atmospheric sensing.The design allows for the low-stress mounting of fragile objects, like thin walled glass, by using particular ways of compensating, isolating, or releasing the coefficient of thermal expansion (CTE) differences between the mounted object and the mount itself. This mount profile is lower than true full kinematic mounting. Also, this approach enables accurate positioning of the component for electrical and optical interfaces. It avoids the higher and unpredictable stress issues that often result from “potting” the object. The mount has been built and tested to space-flight specifications, and has been used for fiber-optic, optical, and electrical interfaces for a spaceflight mission.

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>

Range 7 Scanner Integration With PaR Robot Scanning System

Models of complex objects can be developed even if the objects are large and featureless.An interface bracket and coordinate transformation matrices were designed to allow the Range 7 scanner to be mounted on the PaR Robot detector arm for scanning the heat shield or other object placed in the test cell. A process was designed for using Rapid Form XOR to stitch data from multiple scans together to provide an accurate 3D model of the object scanned.

Posted in: Manufacturing & Prototyping, Test & Measurement, Briefs

Read More >>

High-Operating-Temperature Barrier Infrared Detector With Tailorable Cutoff Wavelength

Novel materials allow the detector to operate at higher temperatures.A mid-wavelength infrared (MWIR) barrier photodetector is capable of operating at higher temperature than the prevailing MWIR detectors based on InSb. The standard high-operating-temperature barrier infrared detector(HOT-BIRD) is made with an InAsSb infrared absorber that is lattice-matched to a GaSb substrate, and has a cutoff wavelength of approximately 4 microns. To increase the versatility and utility of the HOT-BIRD, it is implemented with IR absorber materials with customizable cutoff wavelengths.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Methods of Antimicrobial Coating of Diverse Materials

Methods of coating diverse substrate materials with antimicrobial agents have been developed. Originally intended to reduce health risks to astronauts posed by pathogenic microorganisms that can grow on surfaces in spacecraft, these methods could also be used on Earth — for example, to ensure sterility of surgical inserts and other medical equipment. The methods involve, generally, chemical preparation of substrate surfaces to enable attachment of antimicrobial molecules to the substrate surfaces via covalent bonds. Substrate materials that have been treated successfully include aluminum, glass, a corrosion-resistant nickel alloy, stainless steel, titanium, and poly(tetrafluoroethylene). Antimicrobial agents that have been successfully immobilized include antibiotics, enzymes, bacteriocins, bactericides, and fungicides. A variety of linkage chemistries were employed. Activity of antimicrobial coatings against gram-positive bacteria, gram-negative bacteria, and fungi was demonstrated. Results of investigations indicate that the most suitable combination of antimicrobial agent, substrate, and coating method depends upon the intended application.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Antimicrobial-Coated Granules for Disinfecting Water

Methods of preparing antimicrobial-coated granules for disinfecting flowing potable water have been developed. Like the methods reported in the immediately preceding article, these methods involve chemical preparation of substrate surfaces (in this case, the surfaces of granules) to enable attachment of antimicrobial molecules to the surfaces via covalent bonds. A variety of granular materials have been coated with a variety of antimicrobial agents that include antibiotics, bacteriocins, enzymes, bactericides, and fungicides. When employed in packed beds in flowing water, these antimicrobial-coated granules have been proven effective against gram-positive bacteria, gram-negative bacteria, fungi, and viruses. Composite beds, consisting of multiple layers containing different granular antimicrobial media, have proven particularly effective against a broad spectrum of microorganisms. These media have also proven effective in enhancing or potentiating the biocidal effects of in-line iodinated resins and of very low levels of dissolved elemental iodine.

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>

Hybrid Composite Cryogenic Tank Structure

A number of materials can be used to produce external and internal layers of the structure.A hybrid lightweight composite tank has been created using specially designed materials and manufacturing processes. The tank is produced by using a hybrid structure consisting of at least two reinforced composite material systems. The inner composite layer comprises a distinct fiber and resin matrix suitable for cryogenic use that is a braided-sleeve (and/or a filament-wound layer) aramid fiber preform that is placed on a removable mandrel (outfitted with metallic end fittings) and is infused (vacuum-assisted resin transfer molded) with a polyurethane resin matrix with a high ductility at low temperatures. This inner layer is allowed to cure and is encapsulated with a filament-wound outer composite layer of a distinct fiber resin system. Both inner and outer layer are in intimate contact, and can also be cured at the same time. The outer layer is a material that performs well for low temperature pressure vessels, and it can rely on the inner layer to act as a liner to contain the fluids.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Nanoscale Deformable Optics

This technology has potential applications in medical imaging, robotics, precision machining, and threat detection.Several missions and instruments in the conceptual design phase rely on the technique of interferometry to create detectable fringe patterns. The intimate emplacement of reflective material upon electron device cells based upon chalcogenide material technology permits high-speed, predictable deformation of the reflective surface to a subnanometer or finer resolution with a very high degree of accuracy.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>