Manufacturing & Prototyping

Antimicrobial-Coated Granules for Disinfecting Water

Methods of preparing antimicrobial-coated granules for disinfecting flowing potable water have been developed. Like the methods reported in the immediately preceding article, these methods involve chemical preparation of substrate surfaces (in this case, the surfaces of granules) to enable attachment of antimicrobial molecules to the surfaces via covalent bonds. A variety of granular materials have been coated with a variety of antimicrobial agents that include antibiotics, bacteriocins, enzymes, bactericides, and fungicides. When employed in packed beds in flowing water, these antimicrobial-coated granules have been proven effective against gram-positive bacteria, gram-negative bacteria, fungi, and viruses. Composite beds, consisting of multiple layers containing different granular antimicrobial media, have proven particularly effective against a broad spectrum of microorganisms. These media have also proven effective in enhancing or potentiating the biocidal effects of in-line iodinated resins and of very low levels of dissolved elemental iodine.

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>

Hybrid Composite Cryogenic Tank Structure

A number of materials can be used to produce external and internal layers of the structure.A hybrid lightweight composite tank has been created using specially designed materials and manufacturing processes. The tank is produced by using a hybrid structure consisting of at least two reinforced composite material systems. The inner composite layer comprises a distinct fiber and resin matrix suitable for cryogenic use that is a braided-sleeve (and/or a filament-wound layer) aramid fiber preform that is placed on a removable mandrel (outfitted with metallic end fittings) and is infused (vacuum-assisted resin transfer molded) with a polyurethane resin matrix with a high ductility at low temperatures. This inner layer is allowed to cure and is encapsulated with a filament-wound outer composite layer of a distinct fiber resin system. Both inner and outer layer are in intimate contact, and can also be cured at the same time. The outer layer is a material that performs well for low temperature pressure vessels, and it can rely on the inner layer to act as a liner to contain the fluids.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Nanoscale Deformable Optics

This technology has potential applications in medical imaging, robotics, precision machining, and threat detection.Several missions and instruments in the conceptual design phase rely on the technique of interferometry to create detectable fringe patterns. The intimate emplacement of reflective material upon electron device cells based upon chalcogenide material technology permits high-speed, predictable deformation of the reflective surface to a subnanometer or finer resolution with a very high degree of accuracy.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Zinc Oxide Nanowire Interphase for Enhanced Lightweight Polymer Fiber Composites

This technique can be used in applications requiring reduced structural mass, such as in aircraft, missiles, rockets, and balloons.The objective of this work was to increase the interfacial strength between aramid fiber and epoxy matrix. This was achieved by functionalizing the aramid fiber followed by growth of a layer of ZnO nanowires on the fiber surface such that when embedded into the polymer, the load transfer and bonding area could be substantially enhanced. The functionalization procedure developed here created functional carboxylic acid surface groups that chemically interact with the ZnO and thus greatly enhance the strength of the interface between the fiber and the ZnO.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Reliability-Based Design Optimization of a Composite Airframe Component

This methodology accommodates uncertainties in load, strength, and material properties.A stochastic optimization methodology (SDO) has been developed to design air-frame structural components made of metallic and composite materials. The design method accommodates uncertainties in load, strength, and material properties that are defined by distribution functions with mean values and standard deviations. A response parameter, like a failure mode, has become a function of reliability. The primitive variables like thermomechanical loads, material properties, and failure theories, as well as variables like depth of beam or thickness of a membrane, are considered random parameters with specified distribution functions defined by mean values and standard deviations.

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>

Propulsion Design With Freeform Fabrication (PDFF)

Innovation for ceramic materials uses solid freeform rapid prototype manufacturing technology.The nation is challenged to decrease the cost and schedule to develop new space transportation propulsion systems for commercial, scientific, and military purposes. Better design criteria and manufacturing techniques for small thrusters are needed to meet current applications in missile defense, space, and satellite propulsion. The requirements of these systems present size, performance, and environmental demands on these thrusters that have posed significant challenges to the current designers and manufacturers. Designers are limited by manufacturing processes, which are complex, costly, and time consuming, and ultimately limited in their capabilities.

Posted in: Electronics & Computers, Manufacturing & Prototyping, Briefs, TSP

Read More >>

Economical Fabrication of Thick-Section Ceramic Matrix Composites

Applications for these composites include combustors, high-temperature filter elements, and process industry parts requiring corrosion resistance.A method was developed for producing thick-section [>2 in. (≈5 cm)], continuous fiber-reinforced ceramic matrix composites (CMCs). Ultramet-modified fiber interface coating and melt infiltration processing, developed previously for thin-section components, were used for the fabrication of CMCs that were an order of magnitude greater in thickness [up to 2.5 in. (≈6.4 cm)]. Melt processing first involves infiltration of a fiber preform with the desired interface coating, and then with carbon to partially densify the preform. A molten refractory metal is then infiltrated and reacts with the excess carbon to form the carbide matrix without damaging the fiber reinforcement. Infiltration occurs from the inside out as the molten metal fills virtually all the available void space. Densification to

Posted in: Manufacturing & Prototyping, Briefs

Read More >>