Manufacturing & Prototyping

Nanoscale Deformable Optics

This technology has potential applications in medical imaging, robotics, precision machining, and threat detection.Several missions and instruments in the conceptual design phase rely on the technique of interferometry to create detectable fringe patterns. The intimate emplacement of reflective material upon electron device cells based upon chalcogenide material technology permits high-speed, predictable deformation of the reflective surface to a subnanometer or finer resolution with a very high degree of accuracy.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Zinc Oxide Nanowire Interphase for Enhanced Lightweight Polymer Fiber Composites

This technique can be used in applications requiring reduced structural mass, such as in aircraft, missiles, rockets, and balloons.The objective of this work was to increase the interfacial strength between aramid fiber and epoxy matrix. This was achieved by functionalizing the aramid fiber followed by growth of a layer of ZnO nanowires on the fiber surface such that when embedded into the polymer, the load transfer and bonding area could be substantially enhanced. The functionalization procedure developed here created functional carboxylic acid surface groups that chemically interact with the ZnO and thus greatly enhance the strength of the interface between the fiber and the ZnO.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Reliability-Based Design Optimization of a Composite Airframe Component

This methodology accommodates uncertainties in load, strength, and material properties.A stochastic optimization methodology (SDO) has been developed to design air-frame structural components made of metallic and composite materials. The design method accommodates uncertainties in load, strength, and material properties that are defined by distribution functions with mean values and standard deviations. A response parameter, like a failure mode, has become a function of reliability. The primitive variables like thermomechanical loads, material properties, and failure theories, as well as variables like depth of beam or thickness of a membrane, are considered random parameters with specified distribution functions defined by mean values and standard deviations.

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>

Propulsion Design With Freeform Fabrication (PDFF)

Innovation for ceramic materials uses solid freeform rapid prototype manufacturing technology.The nation is challenged to decrease the cost and schedule to develop new space transportation propulsion systems for commercial, scientific, and military purposes. Better design criteria and manufacturing techniques for small thrusters are needed to meet current applications in missile defense, space, and satellite propulsion. The requirements of these systems present size, performance, and environmental demands on these thrusters that have posed significant challenges to the current designers and manufacturers. Designers are limited by manufacturing processes, which are complex, costly, and time consuming, and ultimately limited in their capabilities.

Posted in: Electronics & Computers, Manufacturing & Prototyping, Briefs, TSP

Read More >>

Economical Fabrication of Thick-Section Ceramic Matrix Composites

Applications for these composites include combustors, high-temperature filter elements, and process industry parts requiring corrosion resistance.A method was developed for producing thick-section [>2 in. (≈5 cm)], continuous fiber-reinforced ceramic matrix composites (CMCs). Ultramet-modified fiber interface coating and melt infiltration processing, developed previously for thin-section components, were used for the fabrication of CMCs that were an order of magnitude greater in thickness [up to 2.5 in. (≈6.4 cm)]. Melt processing first involves infiltration of a fiber preform with the desired interface coating, and then with carbon to partially densify the preform. A molten refractory metal is then infiltrated and reacts with the excess carbon to form the carbide matrix without damaging the fiber reinforcement. Infiltration occurs from the inside out as the molten metal fills virtually all the available void space. Densification to

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Process for Making a Noble Metal on Tin Oxide Catalyst

This method produces an efficient, room-temperature catalyst for recombining carbon monoxide and oxygen products.To produce a noble metal-on-metal oxide catalyst on an inert, high-surface-area support material (that functions as a catalyst at approximately room temperature using chloride-free reagents), for use in a carbon dioxide laser, requires two steps: First, a commercially available, inert, high-surface area support material (silica spheres) is coated with a thin layer of metal oxide, a monolayer equivalent. Very beneficial results have been obtained using nitric acid as an oxidizing agent because it leaves no residue. It is also helpful if the spheres are first de-aerated by boiling in water to allow the entire surface to be coated. A metal, such as tin, is then dissolved in the oxidizing agent/support material mixture to yield, in the case of tin, metastannic acid. Although tin has proven especially beneficial for use in a closed-cycle CO2 laser, in general any metal with two valence states, such as most transition metals and antimony, may be used. The metastannic acid will be adsorbed onto the high-surface-area spheres, coating them. Any excess oxidizing agent is then evaporated, and the resulting metastannic acid-coated spheres are dried and calcined, whereby the metastannic acid becomes tin(IV) oxide.

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>

Optimal Flow Control Design

This design results in a quieter and more environmentally friendly transport aircraft.In support of the Blended-Wing-Body aircraft concept, a new flow control hybrid vane/jet design has been developed for use in a boundary-layer-ingesting (BLI) offset inlet in transonic flows. This inlet flow control is designed to minimize the engine fan-face distortion levels and the first five Fourier harmonic half amplitudes while maximizing the inlet pressure recovery. This concept represents a potentially enabling technology for quieter and more environmentally friendly transport aircraft.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>