Manufacturing & Prototyping

Paint-Overspray Catcher

Turning airflow and entrained droplets would be drawn away. An apparatus to catch paint overspray has been proposed. Overspray is an unavoidable parasitic component of spray that occurs because the flow of air or other gas in the spray must turn at the sprayed surface. Very small droplets are carried away in this turning flow, and some land on adjacent surfaces not meant to be painted.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Relatively Inexpensive Rapid Prototyping of Small Parts

Paper drawings and the associated delays in fabrication are eliminated. Parts with complex three-dimensional shapes and with dimensions up to 8 by 8 by 10 in. (20.3 by 20.3 by 25.4 cm) can be made as unitary pieces of a room- temperature- curing polymer, with relatively little investment in time and money, by a process now in use at Johnson Space Center. The process is one of a growing number of processes and techniques that are known collectively as the art of rapid prototyping. The main advantages of this process over other rapid-prototyping processes are greater speed and lower cost: There is no need to make paper drawings and take them to a shop for fabrication, and thus no need for the attendant paperwork and organizational delays. Instead, molds for desired parts are made automatically on a machine that is guided by data from a computer-aided design (CAD) system and can reside in an engineering office.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Microscope Cells Containing Multiple Micromachined Wells

The cost per cell has been reduced substantially. An improved design for multiple-well microscope cells and an associated improved method of fabricating them have been devised. [As used here, "well" denotes a cavity that has a volume of about 1 or 2 µL and that is used to hold a sample for examination under a microscope. As used here, "cell" denotes a laminate, based on a standard 1- by 3-in. (2.54- by 7.62-cm) microscope slide, that comprises (1) the slide as the lower layer, (2) an intermediate layer that contains holes that serve as the wells, and (3) a top layer that either consists of, or is similar to, a standard microscope-slide cover slip.] The improved design and method of fabrication make it possible to increase (relative to a prior design and method of fabrication) the number of wells per cell while reducing the fabrication loss and reducing the cost per cell to about one-tenth of the prior value.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Block Copolymers as Templates for Arrays of Carbon Nanotubes

The spontaneous formation of nanostructures in block copolymers would be exploited. A method of manufacturing regular arrays of precisely sized, shaped, positioned, and oriented carbon nanotubes has been proposed. Arrays of carbon nanotubes could prove useful in such diverse applications as communications (especially for filtering of signals), biotechnology (for sequencing of DNA and separation of chemicals), and micro- and nanoelectronics (as field emitters and as signal transducers and processors). The method is expected to be suitable for implementation in standard semiconductor-device fabrication facilities.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Electrophoretic Deposition for Fabricating Microbatteries

Discharge capacities can be much greater than those achieved previously. An improved method of fabrication of cathodes of microbatteries is based on electrophoretic deposition. Heretofore, sputtering (for deposition) and the use of photoresist and liftoff (for patterning) have been the primary methods of fabricating components of microbatteries. The volume of active electrode material that can be deposited by sputtering is limited, and the discharge capacities of prior microbatteries have been limited accordingly. In addition, sputter deposition is slow. In contrast, electrophoretic deposition is much faster and has shown promise for increasing discharge capacities by a factor of 10, relative to those of microbatteries fabricated by prior methods.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Tool For Friction Stir Tack Welding of Aluminum Alloys

The same setup can be used for tack welding and full friction stir welding. A small friction-stir- welding tool has been developed for use in tack welding of aluminum-alloy workpieces. It is necessary to tack-weld the workpieces in order to hold them together during friction stir welding because (1) in operation, a full-size friction-stir-welding tool exerts a large force that tends to separate the workpieces and (2) clamping the workpieces is not sufficient to resist this force.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Improving Plating by Use of Intense Acoustic Beams

This method affords enhanced capabilities for maskless plating and process control. An improved method of selective plating of metals and possibly other materials involves the use of directed high-intensity acoustic beams. The beams, typically in the ultrasonic frequency range, can be generated by fixed- focus transducers (see figure) or by phased arrays of transducers excited, variously, by continuous waves, tone bursts, or single pulses. The nonlinear effects produced by these beams are used to alter plating processes in ways that are advantageous.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>