Manufacturing & Prototyping

3D Printed Jet Engine Debuts

Researchers at Monash University in Australia have produced a 3D printed jet engine. Professor Xinhua Wu, head of the Monash Centre for Additive Manufacturing (MCAM), is leading initiatives to develop 3D printing. The Centre is working to provide answers for manufacturers seeking new manufacturing processes that make components lighter and cheaper than traditional ones, but without any reduction in performance.

Posted in: UpFront, Aeronautics, Aerospace, Aviation, Manufacturing & Prototyping, Propulsion

Read More >>

Lunar Cold Trap Contamination by Landing Vehicles

Software and methods are developed to assess the magnitude and distribution of lunar surface contamination caused by the engine exhaust of a landing vehicle. John F. Kennedy Space Center, Florida The emerging interest in lunar mining poses a threat of contamination to pristine craters at the lunar poles, which act as cold traps for water, and may harbor other valuable minerals. Lunar Prospector type missions will be looking for volatile (molecular) compounds that may be masked by the exhaust gases from landing vehicle engines. The possible self-contamination of the landing site could negate the scientific value of the soil samples taken in the vicinity of the landing site. Self-contamination may also lead to false-positive readings of resources available on the lunar surface. This innovation addresses the software and methods needed to assess the magnitude and distribution of lunar surface contamination caused by the engine exhaust of landing vehicles on known or planned descent trajectories.

Posted in: Briefs, TSP, Aerospace, Manufacturing & Prototyping, Software

Read More >>

Product of the Month: March 2015

Instron, Norwood, MA, introduced the AVE 2 strain measurement system that conforms to testing standards such as ISO 527, ASTM D3039, and ASTM D638. The video extensometer utilizes patented measurement technology, and adapts to the normal fluctuations of indoor environmental conditions. It can be adapted to any testing machine that uses a ±10V analog input. Designed to reduce errors from thermal and lighting variations, the device uses the real-time 490-Hz data rate while achieving a 1-micron accuracy. It allows for testing under multiple environmental conditions and can be used for strain measurement with Digital Image Correlation (DIC). The device measures both modulus and strain-to-failure of most materials including plastics, metals, composites, textiles, films, and bio-materials.

Posted in: Products, Manufacturing & Prototyping, Materials, Measuring Instruments

Read More >>

Your Turn to Create the Future

The 13th annual Create the Future Design Contest (www.createthefuturecontest.com), sponsored by COMSOL and Mouser Electronics, and produced by Tech Briefs Media Group, is open for entries. The contest recognizes outstanding innovations in product design worldwide, awarding a Grand Prize of $20,000 USD. There is no cost to enter.

Posted in: Articles, UpFront, Manufacturing & Prototyping

Read More >>

Hubble Spinoffs: Space Age Technology for the Masses

By Bruce A. Bennett Over the plast 25 years, some of the sophisticated technology developed for the HST has been successfully spun off and commercialized to improve life on Earth.

Posted in: Articles, Features, Cameras, Imaging, Manufacturing & Prototyping, Medical, Photonics, Semiconductors & ICs, Software

Read More >>

Fabrication of Single-Mode, Distributed-Feedback, Interband Cascade Lasers

Applications exist in the oil and gas industry, automobile emissions monitors, breath analyzers, and fire detection equipment. Type-II interband cascade lasers (ICLs) based on the GaSb material system represent an enabling technology for laser absorption spectroscopy in the 3-to-5-μm wavelength range. Instruments operating in this spectral regime can precisely match strong absorption lines of several gas molecules of interest in atmospheric science and environmental monitoring, specifically methane, ethane, other alkanes, and inorganic gases. Compared with non-semiconductor-based laser technologies, ICLs can be made more compact and power efficient, ultimately leading to more portable, robust, and manufacturable spectroscopy instruments.

Posted in: Briefs, Manufacturing & Prototyping, Lasers & Laser Systems, Optics, Photonics

Read More >>

Developing Ceramic-Like Bulk Metallic Glass Gears

This technology has applications in gears, bearings, and gearboxes for automotive, spacecraft, and robotics. This invention describes systems and methods for implementing bulk metallic glass-based (BMG) macroscale gears with high wear resistance. This invention creates bulk metallic glasses (BMGs) with selected mechanical properties that are very similar to ceramics, such as high strength and resistance to wear, but without high melting temperatures. Ceramics are high-strength, hard materials that are typically used for their extremely high melting temperatures. Because of their extreme hardness, ceramics are optimal materials for making gears, due to their low wear loss. Unfortunately, ceramics suffer from low fracture toughness (typically <1 MPa·m1/2), and their high melting temperatures prevent them from being cast into net-shaped parts. Ceramic gears, for example, must be ground to a final shape at great expense.

Posted in: Briefs, Manufacturing & Prototyping, Ceramics, Materials, Metals, Motion Control

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.