Manufacturing & Prototyping

Portable Friction Stir Welding Machine

The machine is capable of butt-welding aluminum 1,100 workpieces 1/8 in. (≈3 mm) thick. Marshall Space Flight Center, Alabama A preliminary design of a portable friction stir welding (FSW) machine for use in space has been developed. The in-space FSW machine takes the form of a handheld router tool that is historically used in woodworking applications. With the design of the in-space FSW machine, the FSW tool is directly connected to the motor shaft while the motor is mounted to a small frame that supports the tool. The frame has handlebars that allow the operator to grasp the welder and maneuver it along a desired weld path. The key enabler of the in-space FSW machine is an innovative FSW tool design. The FSW tool is a fixed shoulder-to-shoulder bobbin tool that self-aligns and adjusts to the workpiece. The self-aligning and adjusting FSW (SAA-FSW) tool floats freely in the vertical direction, thereby eliminating any external axial load on the machine or operator. The total weight of the in-space FSW machine is 73 lb (≈33 kg), and it only requires one operator. The machine is capable of butt-welding aluminum 1,100 workpieces 1/8 in. (≈3 mm) thick.

Posted in: Briefs, Manufacturing & Prototyping


Multimode, Fiber-Coupled, Tungsten Silicide, Superconducting Nanowire Single-Photon Detector Array

Amorphous WSi allows a much greater active area due to lower incidence of nanowire constrictions. NASA’s Jet Propulsion Laboratory, Pasadena, California The superconducting nanowire single-photon detector (SNSPD) arrays created in this innovation were fabricated using a WSi nanowire process. A gold mirror layer is deposited on an oxidized silicon wafer, and amorphous-state WSi is sputtered from a compound target at a thickness of 5 nm. The WSi nanowire is embedded at the center of a three-layer vertical optical cavity consisting of two silica layers and a titanium oxide anti-reflective coating. The layer thicknesses were chosen, on the basis of simulations and measured material parameters, to optimize efficiency at the target communication wavelength of 1,550 nm, and to minimize the polarization dependence of the detector response.

Posted in: Briefs, TSP, Manufacturing & Prototyping


Sidewall Passivation of GaN Avalanche Photodiodes via Atomic Layer Deposition

Atomic layer deposition is explored as a sidewall passivation method for mesa-isolated gallium nitride. NASA’s Jet Propulsion Laboratory, Pasadena, California The visible-blind detection of UV light has important applications in planetary imaging and spectroscopy, astronomy, communications, and defense-related imaging. Future instruments for imaging in the ultraviolet will require improvements in detector capabilities. An all-solid-state ultraviolet detector will enable substantial improvements in mass, volume, complexity, power, and robustness compared with conventional image-tube-based technologies. One new class of solid-state UV detectors includes those based on the gallium nitride (GaN) family of materials. The electronic passivation methods described here are one promising way to produce detectors with the required low dark current characteristics, and show a significant improvement over current state-of-the-art passivation methods. These methods will contribute to a next-generation solar-blind, solid-state UV detector for a wide range of space-based UV instruments.

Posted in: Briefs, Manufacturing & Prototyping


Researchers Measure Stress in 3D-Printed Metal Parts

Lawrence Livermore National Laboratory researchers have developed an efficient method to measure residual stress in metal parts produced by powder-bed fusion additive manufacturing (AM).The 3D-printing process produces metal parts layer by layer using a high-energy laser beam to fuse metal powder particles. When each layer is complete, the build platform moves downward by the thickness of one layer, and a new powder layer is spread on the previous layer.While the method produces quality parts and components, residual stress is a major problem during the fabrication process. Large temperature changes near the last melt spot, and the repetition of this process, result in localized expansion and contraction.An LLNL research team, led by engineer Amanda Wu, has developed an accurate residual stress measurement method that combines traditional stress-relieving methods (destructive analysis) with modern technology: digital image correlation (DIC). The process provides fast and accurate measurements of surface-level residual stresses in AM parts.The team used DIC to produce a set of quantified residual stress data for AM, exploring laser parameters. DIC is a cost-effective, image analysis method in which a dual camera setup is used to photograph an AM part once before it’s removed from the build plate for analysis and once after. The part is imaged, removed, and then re-imaged to measure the external residual stress.SourceAlso: Learn about Design and Analysis of Metal-to-Composite Nozzle Extension Joints.

Posted in: News, Cameras, Imaging, Manufacturing & Prototyping, Rapid Prototyping & Tooling, Materials, Metals, Lasers & Laser Systems, Photonics, Measuring Instruments, Test & Measurement


High-Res Line Camera Measures Magnetic Fields in Real Time

Scientists have developed a high‑resolution magnetic line camera to measure magnetic fields in real time. Field lines in magnetic systems such as generators or motors that are invisible to the human eye can be made visible using this camera. It is especially suitable for industrial applications in quality assurance during the manufacture of magnets.

Posted in: News, Cameras, Imaging, Manufacturing & Prototyping, Sensors, Measuring Instruments, Test & Measurement


Products of Tomorrow: November 2014

The technologies NASA develops don’t just blast off into space. They also improve our lives here on Earth. Life-saving search-and-rescue tools, implantable medical devices, advances in commercial aircraft safety, increased accuracy in weather forecasting, and the miniature cameras in our cellphones are just some of the examples of NASA-developed technology used in products today.

Posted in: Articles, Products, Techs for License, Manufacturing & Prototyping


2014 Create the Future Design Contest

The 2014 Create the Future Design Contest – sponsored by COMSOL, Inc., Mouser Electronics, and Tech Briefs Media Group (publishers of NASA Tech Briefs) – recognized innovation in product design in seven categories: Aerospace & Defense, Automotive/Transportation, Consumer Products, Electronics, Machinery/Automation/Robotics, Medical, and Sustainable Technologies. In this special section, you’ll meet the Grand Prize Winner, as well as the winners and Honorable Mentions in all seven categories, chosen from more than 1,000 new product ideas submitted from 61 countries. To view all of the entries online, visit

Posted in: Articles, Manufacturing & Prototyping


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.