Manufacturing & Prototyping

Low-Pressure Casting of Bulk Metallic Glasses for Gears and Other Applications

Applications include the automotive, aeronautics, aerospace, robotics, commercial, and military/defense industries. NASA’s Jet Propulsion Laboratory, Pasadena, California With the correct selection of composition, some bulk metallic glasses (BMGs) have been demonstrated that have excellent combinations of hardness, fracture toughness, and wear resistance so that their use in gears and gearboxes is a potentially commercially viable application. For BMGs to be used as a low-cost alternative to steel gears, rapid fabrication strategies are needed to cast the BMGs into net-shaped gears that require little or no post-casting machining prior to use. Die casting, suction casting, and other cold-mold casting techniques have been widely demonstrated for BMGs in the past, but the unique nature of gears precludes traditional techniques from being used in an optimal way.

Posted in: Briefs

Read More >>

3D Printing Today: How Industry is Using and Benefiting from Additive Manufacturing Technology

Are you currently using or planning to implement 3D printing? Find out how your business compares to the broader industry in this major new study, conducted with NASA Tech Briefs magazine. Among the study's conclusions:

Posted in: White Papers

Read More >>

Make Realistic Prototypes in Less Time with Multi-Material 3D Printing

Creating prototypes that look and feel like their production counterparts greatly reduces the product development cycle and makes communication of design ideas much more effective. Most prototypes, however, are made from multiple parts that need to be assembled, which takes time.

Posted in: On-Demand Webinars

Read More >>

Fast, On-Demand Jig & Fixture Production with PolyJet

Jigs and fixtures are an essential part of the manufacturing process that are used to position, hold and check parts and assemblies. But making them with traditional methods and materials is often costly and time consuming. PolyJet 3D printing technology offers an alternative that is much more economical and time-efficient, allowing you to quickly make jigs and fixtures as they’re needed. In this webinar you’ll learn more about these and other benefits of PolyJet 3D printed jigs and fixtures.

Posted in: On-Demand Webinars

Read More >>

Integrating 3D Printing into the Product Development Process

In conjunction with SAE International 3D printing in the product development process is becoming increasingly important with the increase in the pace of the construction industry. Volvo Construction Equipment (CE) has embraced this into its work process. Equipped with a Stratasys Eden 260V, Volvo CE has the ability to create engine component prototypes that are mounted directly on the engine and then tested. Volvo CE also quickly builds 3D models of its new product concepts for stakeholders to get timely feedback, reducing risk and lead time in all development stages. This advantage gives Volvo CE the ability to make better project decisions throughout the development and production cycles.

Posted in: On-Demand Webinars

Read More >>

Designing for the DMLS Process

Direct Metal Laser Sintering is an emerging additive manufacturing technology that has great potential to change the way parts are manufactured.

Posted in: Tech Talks

Read More >>

Aluminum Rocket Engine Injector Fabricated Using 3D Additive Manufacturing

Marshall Space Flight Center, Alabama Liquid rocket engine injectors can be extremely expensive to manufacture and hard to iterate to achieve high performance. Internal sealing points can also be the source of reliability issues. The technology disclosed here covers the application of a 3D additive manufacturing (AM) process to produce a functional aluminum injector for liquid propellant rocket engines, along with injector and overall engine design features that optimize the application of such processes to improve performance, reliability, and affordability relative to components produced using standard machining processes and designs. Aluminum was used for the injector instead of higher- temperature metals like stainless steel because its thermal conductance properties provide more opportunity to leverage the cooling potential of liquid oxygen and other cryogenic propellants.

Posted in: Briefs

Read More >>