Materials & Coatings

Innovative, Low-CTE, Lightweight Structures with Higher Strength

These composites feature controllable properties and strength. Goddard Space Flight Center, Greenbelt, Maryland A series of lightweight (density below 2.0 gm/cm3) composites has been manufactured that have controllable properties. The core composite has been improved to provide higher strength (similar to aluminum), extremely low density, receptivity to exterior coatings, and highly designable properties. The composite is made in days, is machinable and formable, can be joined/threaded, can be exposed to various environments (temperature, radiation), and is easily made into many parts. Lightweight mirrors for space and IR applications are extremely important. The goal of this work was to create lightweight multifunctional composites for replacement of titanium, beryllium, Invar, aluminum, rubber, and graphite epoxy for structural, mirror, and non-structural components. The key characteristics of this tailorable composite are low density, high stiffness (up to 25 MSI modulus), variable/low coefficient of thermal expansion (CTE) (2 to 7 ppm/°C), high temperature refractory materials and variable thermal conductivity. The composites are easily made (time to completion of 7 to 10 days), joinable, threadable, machinable to 80 mils, durable to resist FOD (foreign object damage), ductile enough to behave like a metal, and relatively low in cost.

Posted in: Briefs, TSP, Coatings & Adhesives, Composites, Materials


Negative Dielectric Constant Material Based on Ion-Conducting Materials

Langley Research Center, Hampton, Virginia Metamaterials, or artificial negative index materials (NIMs), have generated great attention due to their unique and exotic electromagnetic properties. A negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly(benzimidazole) (PBI).

Posted in: Briefs, TSP, Energy Storage, Materials, Sensors


Insulating Materials and Precursor Formulations, and Method of Forming

Methods were developed for forming an insulating material that combines a polysilazane, a cross-linking compound, and a gas-generating compound to form a reaction mixture, and curing the reaction mixture to form a modified polysilazane. The gas-generating compound may be water, an alcohol, an amine, or a matrix comprising one of a reaction product of a polysilazane and an isocyanate, and a reaction product of a polysilazane and an epoxy resin. The matrix also comprises a plurality of interconnected pores produced from a reaction of the polysilazane and the epoxy resin.

Posted in: Briefs, Materials


Selective Clay Placement Within a Silicate Clay-Epoxy-Blend Nanocomposite

The resulting toughened epoxies and composites are used for commercial and military aircraft, and marine applications. John H. Glenn Research Center, Cleveland, Ohio The dispersion of a layered silicate into an epoxy matrix often increases the material strength and stiffness, but reduces resin toughness. This innovation is a method to selectively place organically modified clay within specific regions of an epoxy blend, where the clay provides maximum benefit to the material performance. By this process, the material yield stress was observed to increase by 40 to 100%, depending on the blend composition. The toughness of the material, as defined by the area under the stress-strain curve, was observed to increase or remain unchanged.

Posted in: Briefs, Composites, Materials


Zero-G Condensing Heat Exchanger with Integral Disinfection

The proposed concept promises to improve the life support environment for astronauts. John H. Glenn Research Center, Cleveland, Ohio A concept for a unique zero-g condensing heat exchanger that has an integral ozone-generating capacity has been conceived. This design will contribute to the control of metabolic water vapor in the air, and also provide disinfection of the resultant condensate, and the disinfection of the air stream that flows through the condensing heat exchanger.

Posted in: Briefs, Materials, Medical


Products of Tomorrow: January 2015

The technologies NASA develops don’t just blast off into space. They also improve our lives here on Earth. Life-saving search-and-rescue tools, implantable medical devices, advances in commercial aircraft safety, increased accuracy in weather forecasting, and the miniature cameras in our cellphones are just some of the examples of NASA-developed technology used in products today.

Posted in: Articles, Products, Techs for License, Manufacturing & Prototyping, Materials, Sensors


Low Viscosity, Two Component Epoxy

Master Bond EP112LS is a two-part epoxy that is well suited for impregnation, potting, encapsulation, sealing and coating applications, particularly in the aerospace and optoelectronics industries. EP112LS is optically clear, features reliable non-yellowing properties and has a refractive index of 1.55. This electrically insulative system is resistant to chemicals including water, oils, fuels, acids and bases. EP112LS is serviceable over the temperature range of -60°F to +450°F.

Posted in: Products, Products, Coatings & Adhesives, Photonics


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.