Materials & Coatings

High-Performance Polyimide Powder Coatings

Applications include bridges, pipes, machinery, exposed metal parts and structures, and automobile components. John F. Kennedy Space Center, Florida Powder coatings are used throughout industry to paint a myriad of metallic objects. This method of coating has gained popularity because of its conservation of materials and elimination of volatile organic compounds (VOCs). Resins used in powder coatings are traditionally chosen from those that have low melting points (polyesters, acrylics, urethanes, epoxies, etc.). These resins are used because they can melt and flow into a smooth coating before curing to a durable surface. High-performance resins such as Teflon, nylon, and polyimide have not found use in powder coatings because of their high melting points.

Posted in: Articles, Briefs, Coatings & Adhesives, Materials

Read More >>

Selective Functionalization of Carbon Nanotubes

This invention is a process by which carbon nanotubes can be chemically functionalized according to their precise electronic structure. The process involves an exploitation of charge transfer stability at the nanotube sidewall to direct selective reaction of certain electronic structures over others. This process forms the basis for manipulating and separating carbon nanotubes by their electronic structure by chemical means.

Posted in: Articles, Briefs, Materials

Read More >>

Predictive Modeling of Corrosion Efficiencies and Toxicities

An analytical approach using a combination of descriptors successfully predicts the performance of a wide range of organic corrosion inhibitors. John F. Kennedy Space Center, Florida Atmospheric corrosion is significantly accelerated by the presence of heat, humidity, corrosive salts, and sunlight. At Kennedy Space Center (KSC), all of these accelerants are present, producing an extremely corrosive environment. Toxicity and environmental impacts of some inorganic corrosion inhibitors have severely limited the use of some of the most effective corrosion inhibitors. Unfortunately, robust, low-toxicity, high-performance organic corrosion inhibitors for coatings are not yet at a stage to replace the most effective inorganic inhibitors.

Posted in: Articles, Briefs, TSP, Materials

Read More >>

Improving Foreign Object Damage Performance for 2D Woven Ceramic Matrix Composites

A model simulates high-speed impact response of ceramic matrix composites. John H. Glenn Research Center, Cleveland, Ohio As the power density of advanced engines increases, the need for new materials that are capable of high operating temperatures, such as ceramic matrix composites (CMCs), is critical for turbine hot-section static and rotating components. Such advanced materials can significantly increase engine operating temperatures relative to those with conventional superalloy metallic blades. They also show the potential to enable longer life, growth margin, reduced emissions, reduced weight, and increased performance when compared with superalloy blade materials.

Posted in: Articles, Briefs, TSP, Composites, Materials

Read More >>

Foldable Material Can Support Many Times its Weight

Researchers at Drexel University and Dalian University of Technology in China have chemically engineered a new, electrically conductive nanomaterial that is flexible enough to fold, but strong enough to support many times its own weight. They believe it can be used to improve electrical energy storage, water filtration, and radio frequency shielding in technology from portable electronics to coaxial cables.

Posted in: News, Aerospace, Defense, Energy, Energy Storage, Materials, Nanotechnology, RF & Microwave Electronics

Read More >>

Researchers Develop a Way to Control Material with Voltage

A new way of switching the magnetic properties of a material using just a small applied voltage, developed by researchers at MIT and collaborators elsewhere, could signal the beginning of a new family of materials with a variety of switchable properties. The technique could ultimately be used to control properties other than magnetism, including reflectivity or thermal conductivity. The first application of the new finding is likely to be a new kind of memory chip that requires no power to maintain data once it’s written, drastically lowering its overall power needs. This could be especially useful for mobile devices, where battery life is often a major limitation.

Posted in: News, Batteries, Board-Level Electronics, Electronic Components, Electronics & Computers, Power Management, Materials, Metals, Semiconductors & ICs

Read More >>

Garnet Ceramics Could Be the Key to High-Energy Lithium Batteries

Scientists at the Department of Energy’s Oak Ridge National Laboratory have discovered exceptional properties in a garnet material that could enable development of higher-energy battery designs. The ORNL-led team used scanning transmission electron microscopy to take an atomic-level look at a cubic garnet material called LLZO. The researchers found the material to be highly stable in a range of aqueous environments, making the compound a promising component in new battery configurations.

Posted in: News, Batteries, Electronic Components, Electronics & Computers, Power Management, Energy, Energy Efficiency, Ceramics, Materials, Semiconductors & ICs

Read More >>

White Papers

Sense Element Pump Ripple Fatigue
Sponsored by Hydra Electric
HAIs and Chemical Resistance
Sponsored by Eastman
Finding the Right Manufacturer for Your Design
Sponsored by Sunstone Circuits
Key Considerations for Powertrain HIL Test
Sponsored by National Instruments
5 Ways the Automated Compliance Management System Provides Value for Your Organization
Sponsored by Verse Solutions
Integrated Epoxy Feedthroughs Improve Fuel Pump Reliability
Sponsored by Douglas Electrical Components

White Papers Sponsored By:

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.