Materials & Coatings

Multifunctional B/C Fiber Composites for Radiation Shielding

Marshall Space Flight Center, Alabama A versatile, novel, multifunctional hybrid structural composite of a high-hydrogen epoxy matrix (UN-10) coupled with boron and carbon fibers (IM-7) has been developed. Prototype laminates of 18×18 in. (≈46×46 cm), with the nominal areal density of 0.35 g/cm2, were fabricated in this effort. The hydrogen atoms in the epoxy will provide shielding strength against high-energy protons, electrons, and heavy ionic species, while the boron fibers that have a high neutron cross-section will help shield against neutrons and reduce the buildup of high-energy photons from secondary reactions. The carbon fibers will provide improved mechanical strength.

Posted in: Briefs, Materials, Composite materials, Fibers


Smart MMOD Thermal Blanket

A spacer is added to standard thermal blankets to improve MMOD shielding. Lyndon B. Johnson Space Center, Houston, Texas This innovation provides for significantly improved protection from micrometeoroid and orbital debris (MMOD) particles, and reliably determines the location, depth, and extent of MMOD impact damage.

Posted in: Briefs, TSP, Materials, Fabrics, Fibers, Foams, Protective equipment, Spacecraft


Using Black Polyimide/Kevlar as a Metering Structure Multi-Layer Insulation (MLI)

This is used as an inner cover for minimizing stray light and providing micrometeoroid protection. Goddard Space Flight Center, Greenbelt, Maryland Metering structures of remote sensing instruments often have large openings or access holes. Shear panels that are X-shaped, such as those proposed for the Neutron Star Interior Composition Explorer (NICER), generally consist of C-channels and L-brackets to minimize structural distortion. This type of metering structure has large openings on the sides. Structural panels that have large access holes, such as those studied for the Landsat Operational Land Imager (OLI), generally consist of aluminum honeycomb panels with composite facesheets. Both types of metering structure require multilayer insulation (MLI) blankets to shield the internal components such as optics from sunlight and Earth albedo, and to minimize heat loss to 3K space by radiation. The issues of conventional MLI blankets for these metering structures include MLI sagging, stray light, and risk of micrometeoroid damage to optics.

Posted in: Briefs, TSP, Materials, Fibers, Insulation, Polymers, Protective structures


Best Practices for Creating Strong Bonds using UV LED Curing & Plasma Treatment

Join UV curing experts OmniCure by Excelitas Technologies and the plasma treating pros from Enercon for an insightful webinar on the best practices when using curable coatings, inks and adhesives.

Posted in: Webinars, On-Demand Webinars, LEDs, Coatings & Adhesives


Advanced Corrosion/Erosion Resistant Coatings: The ANCER™ is Here

Advanced Cooling Technologies (ACT) has developed a vapor deposited ANCER™ (Applied Nanoscale Corrosion Erosion Resistant) coating which has shown to provide superior protection of copper Micro Channel Coolers (MCCs) from catastrophic erosion/corrosion failure while cooling laser diodes.

Posted in: On-Demand Webinars, Coatings & Adhesives


Mechanical Carbon Materials for Aircraft Seal Applications

These materials are of interest to designers of high-speed rotating equipment such as rotary gas compressors and steam turbines. Metallized Carbon Corporation, Ossining, New York Modern mechanical carbon materials are being used in a wide variety of applications, including aircraft gear boxes, air turbine motor starters, and main shaft seals for both aircraft turbine engines and aircraft auxiliary power units (APUs). These self-lubricating materials are composed of fine-grained electrographite substances that are impregnated with proprietary inorganic chemicals to improve their lubricating qualities and oxidation resistance. These modern carbon-based materials are ideal for use in aircraft applications because of their low coefficient of friction, low wear rate at high sliding speed, high thermal conductivity, and resistance to oxidation in high-temperature air.

Posted in: Briefs, Materials, Lubricants, Seals and gaskets, Gas turbines


Strong and Flexible Carbon Fiber Reinforced Phenolic Composites

Ames Research Center, Moffett Field, California A new class of phenolic and carbon-fiber-reinforced phenolic composites has been developed for thermal protection systems. The new materials have the advantage of being lightweight, strong, and tough, yet heat resistant and flexible. They retain excellent mechanical strength at high temperatures. This provides better thermal protection for reentry conditions with high heating rates.

Posted in: Briefs, Materials, Thermal management, Composite materials, Fibers, Spacecraft


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.