Materials

Refractory Ceramic Foams for Novel Applications

Properties could be tailored for specific uses as insulators, filters, or catalyst supports. Workers at NASA Ames Research center are endeavoring to develop durable, oxidation- resistant, foam thermal protection systems (TPSs) that would be suitable for covering large exterior spacecraft surfaces, would have low to moderate densities, and would have temperature capabilities comparable to those of carbon- based TPSs [reusable at 3,000 °F (≈1,650 °C)] with application of suitable coatings. These foams may also be useful for repairing TPSs while in orbit. Moreover, on Earth as well as in outer space, these foams might be useful as catalyst supports and filters.

Posted in: Materials, Briefs, TSP

Read More >>

Self-Deploying Trusses Containing Shape-Memory Polymers

Compacted structures can be used in shelters for hostile environments. Composite truss structures are being developed that can be compacted for stowage and later deploy themselves to full size and shape. In the target applications, these “smart” structures will precisely self-deploy and support a large, lightweight space-based antenna. Self-deploying trusses offer a simple, light, and affordable alternative to articulated mechanisms or inflatable structures. The trusses may also be useful in such terrestrial applications as variable-geometry aircraft components or shelters that can be compacted, transported, and deployed quickly in hostile environments.

Posted in: Materials, Briefs

Read More >>

Optimized Carbonate and Ester-Based Li-Ion Electrolytes

This technology can be used in portable electronics, cell phones, and electric vehicles. To maintain high conductivity in low temperatures, electrolyte co-solvents have been designed to have a high dielectric constant, low viscosity, adequate coordination behavior, and appropriate liquid ranges and salt solubilities. Electrolytes that contain ester-based co-solvents in large proportion (>50 percent) and ethylene carbonate (EC) in small proportion (<20 percent) improve low-temperature performance in MCMB carbon-LiNiCoO2 lithium-ion cells. These co-solvents have been demonstrated to enhance performance, especially at temperatures down to –70 °C. Low-viscosity, ester-based co-solvents were incorporated into multi-component electrolytes of the following composition: 1.0 M LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + X (1:1:8 volume percent) [where X = methyl butyrate (MB), ethyl butyrate EB, methyl propionate (MP), or ethyl valerate (EV)]. These electrolyte formulations result in improved low-temperature performance of lithium-ion cells, with dramatic results at temperatures below –40 °C. [See “Ester-Based Electrolytes for Low-Temperature Li-Ion Cells,” (NPO-41097) NASA Tech Briefs, Vol 29, No. 12 (December, 2005), p. 59.]

Posted in: Materials, Briefs, TSP

Read More >>

Hydroxide-Assisted Bonding of Ultra-Low-Expansion Glass

Preparation of bond surfaces is critical to success. A process for hydroxide-assisted bonding has been developed as a means of joining optical components made of ultra-low-expansion (ULE) glass, while maintaining sufficiently precise alignment between. The process is intended mainly for use in applications in which (1) bonding of glass optical components by use of epoxy does not enable attainment of the required accuracy and dimensional stability and (2) conventional optical contacting (which affords the required accuracy and stability) does not afford adequate bond strength.

Posted in: Materials, Briefs

Read More >>

Photochemically Synthesized Polyimides

Single monomers are polymerized by exposure to ultraviolet light, without heating. An alternative to the conventional approach to synthesis of polyimides involves the use of single monomers that are amenable to photopolymerization. Heretofore, the synthesis of polyimides has involved multiple-monomer formulations and heating to temperatures that often exceed 250 °C. The present alternative approach enables synthesis under relatively mild conditions that can include room temperature.

Posted in: Materials, Briefs, TSP

Read More >>

Gas Sensors Based on Coated and Doped Carbon Nanotubes

Large specific surface areas of nanotubes could enable attainment of high sensitivities. Efforts are underway to develop inexpensive, low-power electronic sensors, based on single-walled carbon nanotubes (SWCNTs), for measuring part-per-million and part-per-billion of selected gases (small molecules) at room temperature. Chemically unmodified SWCNTs are mostly unresponsive to typical gases that one might wish to detect. However, the electrical resistances of SWCNTs can be made to vary with concentrations of gases of interest by coating or doping the SWCNTs with suitable materials. Accordingly, the basic idea of the present development efforts is to incorporate thus-treated SWCNTs into electronic devices that measure their electrical resistances.

Posted in: Materials, Briefs

Read More >>

High-Temperature SMAs for Actuator Applications

Work output is comparable to conventional SMA alloys but with transition temperatures significantly exceeding those of conventional materials. Compositions and production processes have been developed for making NiTi-based shape-memory alloys (SMAs) that can be tailored for use as actuator materials at temperatures exceeding those of conventional alloys. Whereas conventional shape-memory alloys are limited to use at temperatures well below 100 °C due to low transformation temperatures, these high-temperature shape-memory alloys (HTSMAs) have transformation temperatures exceeding 300 °C while maintaining many of the other attributes associated with NiTi alloys, most importantly high work output (see Figure 1). Other attractive properties of this family of NiTiPt HTSMAs include usefully high values of tensile ductility, relatively narrow hysteresis, good oxidation resistance up to 600 °C, and excellent thermal and dimensional stability. Just as important, these alloys can be readily processed into various structural forms such as thin rod and fine-diameter wire by conventional processes (see Figure 2). These materials hold promise for expanding the variety of applications in which SMAbased actuators could be used.

Posted in: Materials, Briefs, TSP

Read More >>

White Papers

Aqueous Critical Cleaning: A White Paper
Sponsored by Alconox
Electroforming Basics
Sponsored by Servometer
Maintenance Free Linear Guides
Sponsored by IKO
Cultural audits: What are they and why are they essential?
Sponsored by B Braun
Simulation of Coupled Electromagnetic/Thermal Systems using CAE Software
Sponsored by IES
IEC 61131-3 Now in Motion
Sponsored by Trio Motion

White Papers Sponsored By: