Materials & Coatings

Coating Carbon Fibers With Platinum

Uniform coats are produced relatively inexpensively. A process for coating carbon fibers with platinum has been developed. The process may also be adaptable to coating carbon fibers with other noble and refractory metals, including rhenium and iridium. The coated carbon fibers would be used as ingredients of matrix/fiber composite materials that would resist oxidation at high temperatures. The metal coats would contribute to oxidation resistance by keeping atmospheric oxygen away from fibers when cracks form in the matrices.

Posted in: Materials, Briefs

Read More >>

Nanorod-Based Fast-Response Pressure-Sensitive Paints

Improved, nanostructured coatings could be used to measure rapid pressure fluctuations. A proposed program of research and development would be devoted to exploitation of nanomaterials in pressuresensitive paints (PSPs), which are used on wind-tunnel models for mapping surface pressures associated with flow fields. Heretofore, some success has been achieved in measuring steady-state pressures by use of PSPs, but success in measuring temporally varying pressures has been elusive because of the inherent slowness of the optical responses of these materials.

Posted in: Briefs

Read More >>

Photocatalytic/Magnetic Composite Particles

Magnetic agitation enhances effectiveness. Photocatalytic/ magnetic composite particles have been invented as improved means of exploiting established methods of photocatalysis for removal of chemical and biological pollutants from air and water. The photocatalytic components of the composite particles are formulated for high levels of photocatalytic activity, while the magnetic components make it possible to control the movements of the particles through the application of magnetic fields. The combination of photocatalytic and magnetic properties can be exploited in designing improved air- and water-treatment reactors.

Posted in: Briefs

Read More >>

Norbornene-Based Polymer Electrolytes for Lithium Cells

These solid electrolytes are single-ion conductors. Norbornene-based polymers have shown promise as solid electrolytes for lithium-based rechargeable electrochemical cells. These polymers are characterized as single-ion conductors.

Posted in: Briefs, TSP

Read More >>

Making Single-Source Precursors of Ternary Semiconductors

Commercially available reagents are used in a simplified synthesis. &A synthesis route has been developed for the commercial manufacture of single- source precursors of chalcopyrite semiconductor absorber layers of thin-film solar photovoltaic cells. The semiconductors in question are denoted by the general formula CuInxGa1–xSySe2–y, where 0≤x≤1 and 0≤y≤1.

Posted in: Briefs

Read More >>

Water-Free Proton-Conducting Membranes for Fuel Cells

Fuel cells could be operated at higher temperatures for greater efficiency. Poly-4 -vinylpyridinebisulfate (P4VPBS) is a polymeric salt that has shown promise as a water-free proton-conducting material (solid electrolyte) suitable for use in membrane/electrode assemblies in fuel cells. Heretofore, proton-conducting membranes in fuel cells have been made from perfluorinated ionomers that cannot conduct protons in the absence of water and, consequently, cannot function at temperatures >100 °C. In addition, the stability of perfluorinated ionomers at temperatures >100 °C is questionable. However, the performances of fuel cells of the power systems of which they are parts could be improved if operating temperatures could be raised above 140 °C. What is needed to make this possible is a solidelectrolyte material, such as P4VPBS, that can be cast into membranes and that both retains proton conductivity and remains stable in the desired higher operating temperature range.

Posted in: Materials, Briefs, TSP

Read More >>

Removing Bioactive Contaminants by Use of Atomic Oxygen

Bioactive contaminants are removed without using liquid chemical baths or high temperatures. A method of removing endotoxins and other biologically active organic compounds from the surfaces of solid objects is based on exposure of the objects to monatomic oxygen generated in oxygen plasmas. The mon- atomic oxygen reacts strongly and preferentially with the organic contaminants to form volatile chemical species. The method was developed especially for removing such contaminants as lipopolysaccharides, proteins, lipids, and other biologically active contaminants from surfaces of orthopedic implants prior to sterilization and implantation; if not removed, these con- taminants can contribute to inflammation that sometimes necessitates the surgical removal of the implants.

Posted in: Materials, Briefs, TSP

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.