Materials & Coatings

Coating Reduces Ice Adhesion

Developed for the space shuttle, this coating may be used on aircraft and automobiles. The Shuttle Ice Liberation Coating (SILC) has been developed to reduce the adhesion of ice to surfaces on the space shuttle. SILC, when coated on a surface (foam, metal, epoxy primer, polymer surfaces), will reduce the adhesion of ice by as much as 90 percent as compared to the corresponding uncoated surface. This innovation is a durable coating that can withstand several cycles of ice growth and removal without loss of anti-adhesion properties.

Posted in: Briefs, Materials, Coatings, colorants, and finishes, Durability, Icing and ice detection, Reusable launch vehicles and shuttles


Hybrid Multifoil Aerogel Thermal Insulation

Aerogel used in place of astroquartz makes lighter, more efficient insulation. This innovation blends the merits of multifoil insulation (MFI) with aerogel-based insulation to develop a highly versatile, ultra-low thermally conductive material called hybrid multifoil aerogel thermal insulation (HyMATI). The density of the opacified aerogel is 240 mg/cm3 and has thermal conductivity in the 20 mW/mK range in high vacuum and 25 mW/mK in 1 atmosphere of gas (such as argon) up to 800 ºC. It is stable up to 1,000 ºC. This is equal to commercially available high-temperature thermal insulation. The thermal conductivity of the aerogel is 36 percent lower compared to several commercially available insulations when tested in 1 atmosphere of argon gas up to 800 ºC.

Posted in: Briefs, TSP, Materials, Conductivity, Insulation, Nanomaterials


Directed Growth of Carbon Nanotubes Across Gaps

Single-walled carbon nanotubes grow aligned along applied electric fields. An experiment has shown that when single- walled carbon nanotubes (SWNTs) are grown by chemical vapor deposition in the presence of an electric field of suitable strength, the nanotubes become aligned along the electric field. In an important class of contemplated applications, one would exploit this finding in fabricating nanotube transistors; one would grow SWNTs across gaps between electrodes that would serve, subsequently, as source and drain contacts during operation of the transistors.

Posted in: Briefs, TSP, Materials, Transistors, Fabrication, Chemicals, Nanomaterials


Nanotip Carpets as Antireflection Surfaces

Reflectance less than 10–3 is readily achieved. Carpetlike random arrays of metal-coated silicon nanotips have been shown to be effective as antireflection surfaces. Now undergoing development for incorporation into Sun sensors that would provide guidance for robotic exploratory vehicles on Mars, nanotip carpets of this type could also have many uses on Earth as antireflection surfaces in instruments that handle or detect ultraviolet, visible, or infrared light.

Posted in: Briefs, TSP, Materials, Optics, Materials properties, Nanomaterials


Nano-Engineered Catalysts for Direct Methanol Fuel Cells

Small particle sizes and large surface areas can be produced economically and consistently. Nano-engineered catalysts, and a method of fabricating them, have been developed in a continuing effort to improve the performances of direct methanol fuel cells as candidate power sources to supplant primary and secondary batteries in a variety of portable electronic products. In order to realize the potential for high energy densities (as much as 1.5 W•h/g) of direct methanol fuel cells, it will be necessary to optimize the chemical compositions and geometric configurations of catalyst layers and electrode structures. High performance can be achieved when catalyst particles and electrode structures have the necessary small feature sizes (typically of the order of nanometers), large surface areas, optimal metal compositions, high porosity, and hydrophobicity.

Posted in: Briefs, TSP, Materials, Catalysts, Fuel cells, Methanol, Fabrication, Nanotechnology


Making More-Complex Molecules Using Superthermal Atom/Molecule Collisions

Atoms adsorbed on cold surfaces react with energetic impinging atoms. A method of making more-complex molecules from simpler ones has emerged as a by-product of an experimental study in outer-space atom/ surface collision physics. The subject of the study was the formation of CO2 molecules as a result of impingement of O atoms at controlled kinetic energies upon cold surfaces onto which CO molecules had been adsorbed. In this study, the O/CO system served as a laboratory model, not only for the formation of CO2 but also for the formation of other compounds through impingement of rapidly moving atoms upon molecules adsorbed on such cold interstellar surfaces as those of dust grains or comets. By contributing to the formation of increasingly complex molecules, including organic ones, this study and related other studies may eventually contribute to understanding of the origins of life.

Posted in: Briefs, TSP, Materials, Carbon dioxide, Fabrication, Test procedures


Improved Silica Aerogel Composite Materials

Shrinkage and cracking are greatly reduced. A family of aerogel-matrix composite materials having thermal-stability and mechanical-integrity properties better than those of neat aerogels has been developed. Aerogels are known to be excellent thermal- and acoustic-insulation materials because of their molecular-scale porosity, but heretofore, the use of aerogels has been inhibited by two factors: Their brittleness makes processing and handling difficult. They shrink during production and shrink more when heated to high temperatures during use. The shrinkage and the consequent cracking make it difficult to use them to encapsulate objects in thermal-insulation materials.

Posted in: Briefs, TSP, Materials, Composite materials, Materials properties


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.