Materials

Reliability and Design Considerations for Long Life Using Mica Capacitors in High-Voltage Apps

Over the last 40 years, a series of misconceptions regarding mica capacitor applications has led novice users to consistently over- derate wound or rolled mica/ epoxy dielectric capacitors. Mica, K2A13(Si04)3, a complex aluminum silicate in dielectric form, has been successfully used for many years as an integral part of high- voltage (2KVDC to 50KVDC) capacitor manufacturing — particularly in the 50pF to 5μF value range. Mica has unrivaled physical and electrical properties in comparison to other capacitor dielectrics, especially ceramic. Mica is extremely stable. Capacitance will change only -2% at -54°C and to +3% at +125°C. Mica is an excellent insulator, and is resistant to high temperature, thermal shock, mechanical shock, and vibration.

Posted in: Materials, Briefs

Read More >>

Low-Power RIE of SiO2 in CHF3 To Obtain Steep Sidewalls

Process parameters are chosen carefully to minimize deleterious effects. A reactive-ion etching (RIE) process has been developed to enable the formation of holes with steep sidewalls in a layer of silicon dioxide that covers a silicon substrate. The holes in question are through the thickness of the SiO2 and are used to define silicon substrate areas to be etched or to be built upon through epitaxial deposition of silicon. The sidewalls of these holes are required to be vertical in order to ensure that the sidewalls of the holes to be etched in the substrate or the sidewalls of the epitaxial deposits, respectively, also turn out to be vertical.

Posted in: Materials, Briefs

Read More >>

Annealing Would Improve β" — Alumina Solid Electrolyte

The objective is to prevent a sudden reduction of ionic conductivity. A pre-operational annealing process is under investigation as a potential means of preventing a sudden reduction of ionic conductivity in a β"—alumina solid electrolyte (BASE) during use. On the basis of tests described below, the sudden reduction of ionic conductivity, followed by a slow recovery, has been found to occur during testing of the solid electrolyte and electrode components of an alkali metal thermal-to-electric converter (AMTEC) cell. This conductivity reduction may be observed quite infrequently; at lower operating temperatures, T<1,073 K, it is not usually observed at all, while at T=1,123–1,173 K, hundreds of hours may pass before conductivity reduction occurs. Only on tests running at higher operating temperatures for thousands of hours is this phenomenon regularly exhibited. The reduction of ionic conductivity would degrade the performance of an AMTEC cell. A pre-operational annealing process would help to sustain performance.

Posted in: Materials, Briefs

Read More >>

Mixed Conducting Electrodes for Better AMTEC Cells

These electrodes conduct both electrons and sodium cations. Electrode materials that exhibit mixed conductivity (that is, both electronic and ionic conductivity) have been investigated in a continuing effort to improve the performance of the alkali metal thermal-to-electric converter (AMTEC). These electrode materials are intended primarily for use on the cathode side of the sodium-ion-conducting solid electrolyte of a sodium-based AMTEC cell. They may also prove useful in sodium-sulfur batteries, which are under study for use in electric vehicles.

Posted in: Materials, Briefs

Read More >>

Process for Encapsulating Protein Crystals

Crystals can be grown in forms suitable for x-ray diffraction studies. A process for growing protein crystals encapsulated within membranes has been invented. This process begins with the encapsulation of a nearly saturated aqueous protein solution inside semipermeable membranes to form microcapsules. The encapsulation is effected by use of special formulations of a dissolved protein and a surfactant in an aqueous first liquid phase, which is placed into contact with a second, immiscible liquid phase that contains one or more polymers that are insoluble in the first phase. The second phase becomes formed into the semipermeable membranes that surround microglobules of the first phase, thereby forming the microcapsules. Once formed, the microcapsules are then dehydrated osmotically by exposure to a concentrated salt or polymer solution. The dehydration forms supersaturated solutions inside the microcapsules, thereby enabling nucleation and growth of protein crystals inside the microcapsules.

Posted in: Materials, Briefs

Read More >>

Alkaline Capacitors Based on Nitride Nanoparticles

One key to success is an oxygen-free, plasma-assisted nitride-synthesis process. High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition-metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.

Posted in: Materials, Briefs

Read More >>

Low-EC-Content Electrolytes for Low-Temperature Li-Ion Cells

Electrolytes comprising LiPF6 dissolved at a concentration of 1.0 M in three different mixtures of alkyl carbonates have been found well suited for use in rechargeable lithium-ion electrochemical cells at low temperatures. These and other electrolytes have been investigated in continuing research directed toward extending the lower limit of practical operating temperatures of Li-ion cells down to –60 °C. This research at earlier stages was reported in numerous previous NASA Tech Briefs articles, the three most recent being "Ethyl Methyl Carbonate as a Cosolvent for Lithium-Ion Cells" (NPO-20605), Vol. 25, No. 6 (June 2001), page 53; "Alkyl Pyrocarbonate Electrolyte Additives for Li-Ion Cells" (NPO-20775), Vol. 26, No. 5 (May 2002), page 37; and "Fluorinated Alkyl Carbonates as Cosolvents in Li-Ion Cells (NPO-21076), Vol. 26, No. 05 (May 2002), page 38. The present solvent mixtures, in terms of volume proportions of their ingredients, are 1 ethylene carbonate (EC) + 1 diethyl carbonate (DEC) + 1 dimethyl carbonate (DMC) + 3 ethyl methyl carbonate (EMC); 3EC + 3DMC + 14EMC; and 1EC + 1DEC + 1DMC + 4EMC. Relative to similar mixtures reported previously, the present mixtures, which contain smaller proportions of EC, have been found to afford better performance in experimental Li-ion cells at temperatures <–20 °C.

Posted in: Materials, Briefs

Read More >>