Materials & Coatings

'Tougher-than-Metal' Hydrogels Support New Biomaterials

Scientists from Japan's Hokkaido University have created tough hydrogels combined with woven fiber fabric. The "fiber-reinforced soft composite" fabrics are highly flexible, stronger than metals, and can support a number of potential applications, including artificial ligaments and tendons subjected to load-bearing tension.

Posted in: News, Materials

Read More >>

Mechanical Metamaterials Can Block Symmetry of Motion

An artist’s rendering of mechanical metamaterials. (Credit: Cockrell School of Engineering) Engineers and scientists at the University of Texas at Austin and the AMOLF institute in the Netherlands have invented mechanical metamaterials that transfer motion in one direction while blocking it in the other. The material can be thought of as a mechanical one-way shield that blocks energy from coming in but easily transmits it going out the other side. The researchers developed the mechanical materials using metamaterials, which are synthetic materials with properties that cannot be found in nature.

Posted in: News, Materials, Motion Control

Read More >>

Benefits of Silicone Elastomers for Healthcare Applications

When the human body requires support or artificial replacements in order to function properly or to boost the healing process, it is essential that the materials employed meet the highest quality requirements. Pure silicones support meeting these demands, and their extraordinary properties make them ideal for highly sensitive healthcare applications.

Posted in: Webinars, On-Demand Webinars, Materials, Medical

Read More >>

Light-Absorbent Material Keeps Buildings Cool

Engineers at the University of California San Diego have created a thin, flexible, light-absorbing material that absorbs more than 87 percent of near-infrared light. The technology could someday support the development of solar cells; transparent window coatings to keep cars and buildings cool; and lightweight shields that block thermal detection.

Posted in: News, Materials

Read More >>

Metallic Glass Shatters Gear Limitations

Gears play an essential role in precision robotics, and they can become a limiting factor when the robots must perform in space missions. In particular, the extreme temperatures of deep space pose numerous problems for successful gear operation. At NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, CA, technologist Douglas Hofmann and his collaborators aim to bypass the limitations of existing steel gears by creating gears from bulk metallic glass (BMG).

Posted in: Articles, Aerospace, Manufacturing & Prototyping, Metals, Mechanical Components, Motion Control, Motors & Drives, Power Transmission, Robotics, Robotics, Alloys, Glass, Gears, Durability, Spacecraft

Read More >>

Damage Detection System for Flat Surfaces

This multidimensional system detects damage to surfaces and vessels.NASA's Kennedy Space Center (KSC) seeks to license its Multidimensional Damage Detection System for Flat Surfaces technology. The ability to detect damage to composite surfaces can be crucial, especially when those surfaces are enclosing a sealed environment that sustains human life and/or critical equipment or materials. Minor damage caused by foreign objects can, over time, eventually compromise the structural shell resulting in loss of life and/or destruction of equipment or material. The capability to detect and precisely locate damage to protective surfaces enables technicians to prognosticate the expected lifetime of the composite system, as well as to initiate repairs when needed to prevent catastrophic failure or to extend the service life of the structure.

Posted in: Briefs, Composites, Materials, Sensors, Diagnostics, Maintenance, repair, and service operations, Prognostics, Composite materials, Protective structures

Read More >>

Methods for Intercalating and Exfoliating Hexagonal Boron Nitride

Innovators at NASA's Glenn Research Center have developed a number of materials and methods to optimize the performance of nanomaterials by making them tougher, more resistant, and easier to process. Glenn's scientists are generating critical improvements at all stages of nanomaterial production, from finding new ways to produce nanomaterials, to purifying them to work more effectively with advanced composites, to devising innovative techniques to incorporate them into matrices, veils, and coatings. These advances can be used to deposit protective coatings for textile-based composite materials, layer carbon nanotubes to add reinforcement, upgrade the properties of carbon ceramic matrix composites (CMCs), and integrate nanomaterial fibers into polymer matrix composites (PMCs). The field of nanomaterials is expanding rapidly, and NASA's Glenn Research Center is just as rapidly creating newer and better ways to deploy nanomaterials in industry and research.

Posted in: Briefs, Materials, Research and development, Production, Nanomaterials

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.