Materials & Coatings

Improving Foreign Object Damage Performance for 2D Woven Ceramic Matrix Composites

A model simulates high-speed impact response of ceramic matrix composites. John H. Glenn Research Center, Cleveland, Ohio As the power density of advanced engines increases, the need for new materials that are capable of high operating temperatures, such as ceramic matrix composites (CMCs), is critical for turbine hot-section static and rotating components. Such advanced materials can significantly increase engine operating temperatures relative to those with conventional superalloy metallic blades. They also show the potential to enable longer life, growth margin, reduced emissions, reduced weight, and increased performance when compared with superalloy blade materials.

Posted in: Articles, Briefs, TSP, Composites


Low Viscosity, Two Component Epoxy

Master Bond EP112LS is a two-part epoxy that is well suited for impregnation, potting, encapsulation, sealing and coating applications, particularly in the aerospace and optoelectronics industries. EP112LS is optically clear, features reliable non-yellowing properties and has a refractive index of 1.55. This electrically insulative system is resistant to chemicals including water, oils, fuels, acids and bases. EP112LS is serviceable over the temperature range of -60°F to +450°F.

Posted in: Products, Products, Coatings & Adhesives, Photonics


Laser Optics Coatings

Coated laser optics are used to optimize the characteristics of the emitted laser beam. However, losses are produced at each glass surface - thus the number of optics should be reduced to a minimum. Laser Components (Hudson, NH) offers laser optics that have complex coatings on both the front and the back. From a technical standpoint, this was almost impossible to achieve for a long time because the coating process on the second side heated the first coating and often caused it to crack. The more complex the coating, the more pronounced the problem was.

Posted in: Products, Products, Coatings & Adhesives, Lasers & Laser Systems, Optics, Photonics


Foldable Material Can Support Many Times its Weight

Researchers at Drexel University and Dalian University of Technology in China have chemically engineered a new, electrically conductive nanomaterial that is flexible enough to fold, but strong enough to support many times its own weight. They believe it can be used to improve electrical energy storage, water filtration, and radio frequency shielding in technology from portable electronics to coaxial cables.

Posted in: News, Energy Storage


Researchers Develop a Way to Control Material with Voltage

A new way of switching the magnetic properties of a material using just a small applied voltage, developed by researchers at MIT and collaborators elsewhere, could signal the beginning of a new family of materials with a variety of switchable properties. The technique could ultimately be used to control properties other than magnetism, including reflectivity or thermal conductivity. The first application of the new finding is likely to be a new kind of memory chip that requires no power to maintain data once it’s written, drastically lowering its overall power needs. This could be especially useful for mobile devices, where battery life is often a major limitation.

Posted in: News, Batteries, Board-Level Electronics, Electronic Components, Power Management, Metals


Garnet Ceramics Could Be the Key to High-Energy Lithium Batteries

Scientists at the Department of Energy’s Oak Ridge National Laboratory have discovered exceptional properties in a garnet material that could enable development of higher-energy battery designs. The ORNL-led team used scanning transmission electron microscopy to take an atomic-level look at a cubic garnet material called LLZO. The researchers found the material to be highly stable in a range of aqueous environments, making the compound a promising component in new battery configurations.

Posted in: News, Batteries, Electronic Components, Power Management, Energy Efficiency, Ceramics


Sensor Uses Radio Waves to Detect Subtle Pressure Changes

Stanford engineers have invented a wireless pressure sensor that has already been used to measure brain pressure in lab mice with brain injuries. The underlying technology has such broad potential that it could one day be used to create skin-like materials that can sense pressure, leading to prosthetic devices with the electronic equivalent of a sense of touch. In one simple demonstration they used this wireless pressure sensor to read a team member’s pulse without touching him.

Posted in: News, Metals, Plastics, Antennas, Detectors, Sensors


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.